Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (237)
  • Open Access

    ARTICLE

    Intelligent Scheduling of Virtual Power Plants Based on Deep Reinforcement Learning

    Shaowei He, Wenchao Cui*, Gang Li, Hairun Xu, Xiang Chen, Yu Tai

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 861-886, 2025, DOI:10.32604/cmc.2025.063979 - 09 June 2025

    Abstract The Virtual Power Plant (VPP), as an innovative power management architecture, achieves flexible dispatch and resource optimization of power systems by integrating distributed energy resources. However, due to significant differences in operational costs and flexibility of various types of generation resources, as well as the volatility and uncertainty of renewable energy sources (such as wind and solar power) and the complex variability of load demand, the scheduling optimization of virtual power plants has become a critical issue that needs to be addressed. To solve this, this paper proposes an intelligent scheduling method for virtual power… More >

  • Open Access

    ARTICLE

    Reinforcement Learning for Solving the Knapsack Problem

    Zhenfu Zhang1, Haiyan Yin2, Liudong Zuo3, Pan Lai1,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 919-936, 2025, DOI:10.32604/cmc.2025.062980 - 09 June 2025

    Abstract The knapsack problem is a classical combinatorial optimization problem widely encountered in areas such as logistics, resource allocation, and portfolio optimization. Traditional methods, including dynamic programming (DP) and greedy algorithms, have been effective in solving small problem instances but often struggle with scalability and efficiency as the problem size increases. DP, for instance, has exponential time complexity and can become computationally prohibitive for large problem instances. On the other hand, greedy algorithms offer faster solutions but may not always yield the optimal results, especially when the problem involves complex constraints or large numbers of items.… More >

  • Open Access

    ARTICLE

    Enhanced Practical Byzantine Fault Tolerance for Service Function Chain Deployment: Advancing Big Data Intelligence in Control Systems

    Peiying Zhang1,2,*, Yihong Yu1,2, Jing Liu3, Chong Lv1,2, Lizhuang Tan4,5, Yulin Zhang6,7,8

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4393-4409, 2025, DOI:10.32604/cmc.2025.064654 - 19 May 2025

    Abstract As Internet of Things (IoT) technologies continue to evolve at an unprecedented pace, intelligent big data control and information systems have become critical enablers for organizational digital transformation, facilitating data-driven decision making, fostering innovation ecosystems, and maintaining operational stability. In this study, we propose an advanced deployment algorithm for Service Function Chaining (SFC) that leverages an enhanced Practical Byzantine Fault Tolerance (PBFT) mechanism. The main goal is to tackle the issues of security and resource efficiency in SFC implementation across diverse network settings. By integrating blockchain technology and Deep Reinforcement Learning (DRL), our algorithm not… More >

  • Open Access

    ARTICLE

    Research on Vehicle Safety Based on Multi-Sensor Feature Fusion for Autonomous Driving Task

    Yang Su1,*, Xianrang Shi1, Tinglun Song2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5831-5848, 2025, DOI:10.32604/cmc.2025.064036 - 19 May 2025

    Abstract Ensuring that autonomous vehicles maintain high precision and rapid response capabilities in complex and dynamic driving environments is a critical challenge in the field of autonomous driving. This study aims to enhance the learning efficiency of multi-sensor feature fusion in autonomous driving tasks, thereby improving the safety and responsiveness of the system. To achieve this goal, we propose an innovative multi-sensor feature fusion model that integrates three distinct modalities: visual, radar, and lidar data. The model optimizes the feature fusion process through the introduction of two novel mechanisms: Sparse Channel Pooling (SCP) and Residual Triplet-Attention… More >

  • Open Access

    REVIEW

    Survey on AI-Enabled Resource Management for 6G Heterogeneous Networks: Recent Research, Challenges, and Future Trends

    Hayder Faeq Alhashimi1, Mhd Nour Hindia1, Kaharudin Dimyati1,*, Effariza Binti Hanafi1, Feras Zen Alden2, Faizan Qamar3, Quang Ngoc Nguyen4,5,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 3585-3622, 2025, DOI:10.32604/cmc.2025.062867 - 19 May 2025

    Abstract The forthcoming 6G wireless networks have great potential for establishing AI-based networks that can enhance end-to-end connection and manage massive data of real-time networks. Artificial Intelligence (AI) advancements have contributed to the development of several innovative technologies by providing sophisticated specific AI mathematical models such as machine learning models, deep learning models, and hybrid models. Furthermore, intelligent resource management allows for self-configuration and autonomous decision-making capabilities of AI methods, which in turn improves the performance of 6G networks. Hence, 6G networks rely substantially on AI methods to manage resources. This paper comprehensively surveys the recent… More >

  • Open Access

    ARTICLE

    Priority-Aware Resource Allocation for VNF Deployment in Service Function Chains Based on Graph Reinforcement Learning

    Seyha Ros1,#, Seungwoo Kang1,#, Taikuong Iv1, Inseok Song1, Prohim Tam2, Seokhoon Kim1,3,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1649-1665, 2025, DOI:10.32604/cmc.2025.062716 - 16 April 2025

    Abstract Recently, Network Functions Virtualization (NFV) has become a critical resource for optimizing capability utilization in the 5G/B5G era. NFV decomposes the network resource paradigm, demonstrating the efficient utilization of Network Functions (NFs) to enable configurable service priorities and resource demands. Telecommunications Service Providers (TSPs) face challenges in network utilization, as the vast amounts of data generated by the Internet of Things (IoT) overwhelm existing infrastructures. IoT applications, which generate massive volumes of diverse data and require real-time communication, contribute to bottlenecks and congestion. In this context, Multi-access Edge Computing (MEC) is employed to support resource… More >

  • Open Access

    ARTICLE

    Obstacle Avoidance Path Planning for Delta Robots Based on Digital Twin and Deep Reinforcement Learning

    Hongxiao Wang1, Hongshen Liu1, Dingsen Zhang1,*, Ziye Zhang1, Yonghui Yue1, Jie Chen2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1987-2001, 2025, DOI:10.32604/cmc.2025.060384 - 16 April 2025

    Abstract Despite its immense potential, the application of digital twin technology in real industrial scenarios still faces numerous challenges. This study focuses on industrial assembly lines in sectors such as microelectronics, pharmaceuticals, and food packaging, where precision and speed are paramount, applying digital twin technology to the robotic assembly process. The innovation of this research lies in the development of a digital twin architecture and system for Delta robots that is suitable for real industrial environments. Based on this system, a deep reinforcement learning algorithm for obstacle avoidance path planning in Delta robots has been developed, More >

  • Open Access

    ARTICLE

    Cyclical Training Framework with Graph Feature Optimization for Knowledge Graph Reasoning

    Xiaotong Han1,2, Yunqi Jiang2,3, Haitao Wang1,2, Yuan Tian1,2,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1951-1971, 2025, DOI:10.32604/cmc.2025.060134 - 16 April 2025

    Abstract Knowledge graphs (KGs), which organize real-world knowledge in triples, often suffer from issues of incompleteness. To address this, multi-hop knowledge graph reasoning (KGR) methods have been proposed for interpretable knowledge graph completion. The primary approaches to KGR can be broadly classified into two categories: reinforcement learning (RL)-based methods and sequence-to-sequence (seq2seq)-based methods. While each method has its own distinct advantages, they also come with inherent limitations. To leverage the strengths of each method while addressing their weaknesses, we propose a cyclical training method that alternates for several loops between the seq2seq training phase and the… More >

  • Open Access

    ARTICLE

    Anti-Crack Analysis and Reinforcement Design of Transverse Diaphragm Based on Layered Modeling Analysis Method

    Yuanyin Song1, Wenwei Wang2,*

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 549-574, 2025, DOI:10.32604/sdhm.2024.055382 - 03 April 2025

    Abstract To meticulously dissect the cracking issue in the transverse diaphragm concrete, situated at the anchor point of a colossal large-span, single cable plane cable-stayed bridge, this research paper adopts an innovative layered modeling analysis methodology for numerical simulations. The approach is structured into three distinct layers, each tailored to address specific aspects of the cracking phenomenon. The foundational first layer model operates under the assumption of linear elasticity, adhering to the Saint Venant principle. It narrows its focus to the crucial zone between the Bp20 transverse diaphragm and the central axis of pier 4’s support,… More >

  • Open Access

    ARTICLE

    A Low-Collision and Efficient Grasping Method for Manipulator Based on Safe Reinforcement Learning

    Qinglei Zhang, Bai Hu*, Jiyun Qin, Jianguo Duan, Ying Zhou

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1257-1273, 2025, DOI:10.32604/cmc.2025.059955 - 26 March 2025

    Abstract Grasping is one of the most fundamental operations in modern robotics applications. While deep reinforcement learning (DRL) has demonstrated strong potential in robotics, there is too much emphasis on maximizing the cumulative reward in executing tasks, and the potential safety risks are often ignored. In this paper, an optimization method based on safe reinforcement learning (Safe RL) is proposed to address the robotic grasping problem under safety constraints. Specifically, considering the obstacle avoidance constraints of the system, the grasping problem of the manipulator is modeled as a Constrained Markov Decision Process (CMDP). The Lagrange multiplier… More >

Displaying 51-60 on page 6 of 237. Per Page