Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (500)
  • Open Access

    ARTICLE

    The Research on Low-Light Autonomous Driving Object Detection Method

    Jianhua Yang*, Zhiwei Lv, Changling Huo

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068442 - 10 November 2025

    Abstract Aiming at the scale adaptation of automatic driving target detection algorithms in low illumination environments and the shortcomings in target occlusion processing, this paper proposes a YOLO-LKSDS automatic driving detection model. Firstly, the Contrast-Limited Adaptive Histogram Equalisation (CLAHE) image enhancement algorithm is improved to increase the image contrast and enhance the detailed features of the target; then, on the basis of the YOLOv5 model, the Kmeans++ clustering algorithm is introduced to obtain a suitable anchor frame, and SPPELAN spatial pyramid pooling is improved to enhance the accuracy and robustness of the model for multi-scale target… More >

  • Open Access

    REVIEW

    Research Progress of Drug Delivery Systems Consisting of Hydrogels Loaded with Extracellular Vesicles in Tumor Therapy

    Shaojian Zou1,#, Lipeng Zhang2,#, Xiang Chen3,#, Zhuomin Wang2, Xinhui Zhu2, Dandong Luo4, Shengxun Mao2,*, Zhen Zong2,*

    Oncology Research, Vol.33, No.12, pp. 3753-3788, 2025, DOI:10.32604/or.2025.067586 - 27 November 2025

    Abstract Traditional cancer therapies have limitations like poor efficacy on advanced tumors, healthy tissue damage, side effects, and drug resistance, creating an urgent need for new strategies. Hydrogels have good biocompatibility and controlled release, while extracellular vesicles (EVs) enable targeting and bioactive transport. This review systematically summarizes hydrogels and EVs, focusing on the construction of hydrogel-EV delivery system, key influencing factors, drug delivery mechanisms, and tumor therapy apps, clarifying their synergies. The system overcomes single-carrier flaws, construction methods/key factors affect performance, preclinical studies have confirmed efficacy in multiple therapies, but large-scale production and in vivo stability challenges More >

  • Open Access

    ARTICLE

    Topic Mining and Evolution Analysis of Domestic Smart Library Research Based on the BERTopic Model

    Meile Li1, Yinuo Jiang2,*

    Journal on Artificial Intelligence, Vol.7, pp. 509-516, 2025, DOI:10.32604/jai.2025.073792 - 28 November 2025

    Abstract This paper conducts topic mining and analysis of research literature in the domestic smart library field based on the BERTopic model, aiming to reveal its topic development context and evolution trends. Journal literature in the smart library field collected by CNKI (China National Knowledge Infrastructure) from 2015 to 2024 was analyzed using the BERTopic model and dynamic topic modeling for topic mining and evolution trend analysis. The study found that the domestic smart library field involves multiple core topics, identifying a diversified topic structure centered around “data”, “user”, “5g”, etc. The research results provide data More >

  • Open Access

    REVIEW

    Innovative Research on the Interconnection of C-V2X Technology and Hydrogen Refueling Stations

    Wang Gu1, Yuanyuan Song2, Zhihu Zhang3, Minggang Zheng1,*

    Energy Engineering, Vol.122, No.12, pp. 4837-4856, 2025, DOI:10.32604/ee.2025.069529 - 27 November 2025

    Abstract Driven by the global “dual-carbon” goals, hydrogen fuel cell electric vehicles (FCEVs) are being rapidly promoted as a zero-emission transportation solution. However, their large-scale application is constrained by issues such as inefficient operation, poor information flow between vehicles and stations, and potential safety hazards, which are caused by insufficient intelligence of hydrogen refueling stations. This study aims to address these problems by deeply integrating Cellular Vehicle-to-Everything (C-V2X) technology with hydrogen refueling stations, thereby building a safe, efficient, and low-carbon hydrogen energy application ecosystem to promote the global transition to zero-carbon transportation. Firstly, through literature review… More >

  • Open Access

    ARTICLE

    Dynamic Response Research of Dangerous Rockfall Impact Protection Structures

    Huaiqin Liu1, Meng Li1, Jianwen Shao2, Weishen Zhang1, Qifan Yang1, Yutong Li1, Tian Su1,3,*, Xuefeng Mei4

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1563-1588, 2025, DOI:10.32604/sdhm.2025.073009 - 17 November 2025

    Abstract Rock collapse is a significant geological disaster that poses a serious threat to life and property in mountainous regions worldwide. Investigating the response of protective structures to rockfall impacts can provide valuable references for the design and placement of such structures. In this study, RocPro3D and ABAQUS were employed to comprehensively analyze rockfall movement trajectories and the structural response upon impact. The results indicate that when the impact velocity of rockfall at the protective structure reaches 20–30 m/sec, the corresponding bounce height ranges from 5 to 8 m, and most rockfall accumulates at the slope More > Graphic Abstract

    Dynamic Response Research of Dangerous Rockfall Impact Protection Structures

  • Open Access

    PROCEEDINGS

    Research on the Fabrication and Properties of Si3N4 Ceramic Radomes via Vat Photopolymerization (VPP)

    Jiamin Wu1,2,3,*, Zhicong Luo1,2, Fulin Zhou1,2, Qiwen Wang1,2, Weikang Li1,2, Weihao Cai1,2, Sen Su1,2, Lin Guo1,2, Chunsheng Ye1,2, Yusheng Shi1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.011860

    Abstract Silicon nitride (Si3N4) ceramics with outstanding comprehensive properties, have become important candidate materials for components like radomes and antenna windows. In this study, the vat photopolymerization (VPP) technique was used to fabricate Si3N4 ceramic radomes. Our research centered on optimizing the curing properties of ceramic slurries and precisely regulating the comprehensive properties of the ceramics. Several methods were proposed to modify the curing depth of Si3N4 ceramic slurry, including thermosetting resin coating, sintering aid coating, oxidation coating, double coating, etc. Moreover, a pore-forming agent modification method was also proposed, which enabled the VPP printing of Si3N4 ceramic More >

  • Open Access

    REVIEW

    Evaluation and research progress on rodent models of late-onset hypogonadism: a comprehensive review

    Zheng Liu1,#, Xuhong Yan2,#, Guicheng Liu1, Jingyi Zhang1, Xujun Yu3, Degui Chang1,*, Liang Dong3,*

    Canadian Journal of Urology, Vol.32, No.5, pp. 385-400, 2025, DOI:10.32604/cju.2025.068136 - 30 October 2025

    Abstract Late-onset hypogonadism (LOH), characterized by the intersection of aging and androgen deficiency, impacts the health of approximately 2%−39% of middle-aged and elderly men, underscoring the need for comprehensive research. Animal models, serving as analogs of human diseases, are indispensable for investigating disease mechanisms and facilitating drug development. However, the diverse array of animal models utilized for LOH research has led to a lack of standardized modeling approaches and evaluation systems, potentially impeding progress in understanding the pathogenesis and therapeutic development. In this paper, we summarize and compile the characteristics, methods, and evaluation systems of rodent More >

  • Open Access

    PROCEEDINGS

    Research on the Stress Field Measurement Method Based on Terahertz Time-Domain Spectroscopy

    Kai Kang1,*, Zhiyong Wang2,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.012678

    Abstract Terahertz time-domain spectroscopy (THz-TDS) can be utilized to probe internal parameters of dielectric materials, such as the refractive index. Based on the stress-optic law, stress-induced variations in the refractive index enable the calculation of applied stress through measured changes in the refractive index. This paper introduces a THz-TDS-based methodology for stress field measurement. First, a THz-TDS stress field scanning and imaging system was developed, incorporating an amplitude-field imaging method that maps stress distributions using variations in the amplitude of THz pulses. Second, two analytical algorithms were established: a planar stress analysis algorithm based on THz… More >

  • Open Access

    ARTICLE

    Modeling and Experimental Research of Heat and Mass Transfer during the Freeze-Drying of Porcine Aorta Considering Radially-Layered Tissue Properties

    Chao Gui1,2, Wanying Chang3, Yaping Liu1,*, Leren Tao3, Daoming Shen1, Mengyi Ge1

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1621-1637, 2025, DOI:10.32604/fhmt.2025.072268 - 31 October 2025

    Abstract Freeze-drying of structurally heterogeneous biomaterials such as porcine aorta presents considerable modeling challenges due to their inherent multilayer composition and moving sublimation interfaces. Conventional models often overlook structural anisotropy and dynamic boundary progression, while experimental determination of key parameters under cryogenic conditions remains difficult. To address these, this study develops a heat and mass transfer model incorporating a dynamic node strategy for the sublimation interface, which effectively handles continuous computational domain deformation. Additionally, specialized fixed nodes were incorporated to adapt to the multilayer structure and its spatially varying thermophysical properties. A novel non-contact gravimetric system More > Graphic Abstract

    Modeling and Experimental Research of Heat and Mass Transfer during the Freeze-Drying of Porcine Aorta Considering Radially-Layered Tissue Properties

  • Open Access

    REVIEW

    Research Advances in the Application of Non-Nickel-Based Perovskite Materials for Biogas Reforming

    Hao Tan1,2, Zeai Huang1,2,*, Runxian Gong2, Junming Mei2, Kejie Wu2, Tianyu Yan2, Daoquan Zhu2, Zhibin Zhang2, Ruiyang Zhang1,2

    Energy Engineering, Vol.122, No.11, pp. 4331-4347, 2025, DOI:10.32604/ee.2025.070226 - 27 October 2025

    Abstract Under the driving goal of carbon neutrality, biogas reforming technology has garnered significant attention due to its ability to convert greenhouse gases (CH4/CO2) into syngas (H2/CO). Conventional nickel-based catalysts suffer from issues such as carbon deposition, sintering and sulfur poisoning. Non-nickel-based perovskite materials, with their tunable crystal structure, dynamic oxygen vacancy characteristics, and excellent anti-coking/anti-sulfur performance, have emerged as a promising alternative. This review systematically summarizes the design for non-nickel-based perovskite materials, including optimizing lattice oxygen migration ability and active site stability by A/B site doping, defect engineering and heterojunction construction. The enhancing the conversion rate… More > Graphic Abstract

    Research Advances in the Application of Non-Nickel-Based Perovskite Materials for Biogas Reforming

Displaying 1-10 on page 1 of 500. Per Page