Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    Gated Fusion Based Transformer Model for Crack Detection on Wind Turbine Blade

    Wenyang Tang1,2, Cong Liu1,*, Bo Zhang2

    Energy Engineering, Vol.120, No.11, pp. 2667-2681, 2023, DOI:10.32604/ee.2023.040743

    Abstract Harsh working environments and wear between blades and other unit components can easily lead to cracks and damage on wind turbine blades. The cracks on the blades can endanger the shafting of the generator set, the tower and other components, and even cause the tower to collapse. To achieve high-precision wind blade crack detection, this paper proposes a crack fault-detection strategy that integrates Gated Residual Network (GRN), a fusion module and Transformer. Firstly, GRN can reduce unnecessary noisy inputs that could negatively impact performance while preserving the integrity of feature information. In addition, to gain… More >

  • Open Access

    ARTICLE

    Hybrid Model for Short-Term Passenger Flow Prediction in Rail Transit

    Yinghua Song1,2, Hairong Lyu1,2, Wei Zhang1,2,*

    Journal on Big Data, Vol.5, pp. 19-40, 2023, DOI:10.32604/jbd.2023.038249

    Abstract A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation, assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger safety and operation. First, the passenger flow sequence models in the study are broken down using VMD for noise reduction. The objective environment features are then added to the characteristic factors that affect the passenger flow. The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm. It is shown that the hybrid model VMD-CLSMT has a More >

  • Open Access

    ARTICLE

    Deep Pyramidal Residual Network for Indoor-Outdoor Activity Recognition Based on Wearable Sensor

    Sakorn Mekruksavanich1, Narit Hnoohom2, Anuchit Jitpattanakul3,4,*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2669-2686, 2023, DOI:10.32604/iasc.2023.038549

    Abstract Recognition of human activity is one of the most exciting aspects of time-series classification, with substantial practical and theoretical implications. Recent evidence indicates that activity recognition from wearable sensors is an effective technique for tracking elderly adults and children in indoor and outdoor environments. Consequently, researchers have demonstrated considerable passion for developing cutting-edge deep learning systems capable of exploiting unprocessed sensor data from wearable devices and generating practical decision assistance in many contexts. This study provides a deep learning-based approach for recognizing indoor and outdoor movement utilizing an enhanced deep pyramidal residual model called SenPyramidNet… More >

  • Open Access

    ARTICLE

    A Comprehensive Evaluation of State-of-the-Art Deep Learning Models for Road Surface Type Classification

    Narit Hnoohom1, Sakorn Mekruksavanich2, Anuchit Jitpattanakul3,4,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1275-1291, 2023, DOI:10.32604/iasc.2023.038584

    Abstract In recent years, as intelligent transportation systems (ITS) such as autonomous driving and advanced driver-assistance systems have become more popular, there has been a rise in the need for different sources of traffic situation data. The classification of the road surface type, also known as the RST, is among the most essential of these situational data and can be utilized across the entirety of the ITS domain. Recently, the benefits of deep learning (DL) approaches for sensor-based RST classification have been demonstrated by automatic feature extraction without manual methods. The ability to extract important features… More >

  • Open Access

    ARTICLE

    Fine-Grained Pornographic Image Recognition with Multi-Instance Learning

    Zhiqiang Wu*, Bing Xie

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 299-316, 2023, DOI:10.32604/csse.2023.038586

    Abstract Image has become an essential medium for expressing meaning and disseminating information. Many images are uploaded to the Internet, among which some are pornographic, causing adverse effects on public psychological health. To create a clean and positive Internet environment, network enforcement agencies need an automatic and efficient pornographic image recognition tool. Previous studies on pornographic images mainly rely on convolutional neural networks (CNN). Because of CNN’s many parameters, they must rely on a large labeled training dataset, which takes work to build. To reduce the effect of the database on the recognition performance of pornographic… More >

  • Open Access

    ARTICLE

    Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced Feature Extraction Processing

    V. Banupriya1,*, S. Anusuya2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5597-5613, 2023, DOI:10.32604/cmc.2023.038696

    Abstract In the modern world, one of the most severe eye infections brought on by diabetes is known as diabetic retinopathy (DR), which will result in retinal damage, and, thus, lead to blindness. Diabetic retinopathy (DR) can be well treated with early diagnosis. Retinal fundus images of humans are used to screen for lesions in the retina. However, detecting DR in the early stages is challenging due to the minimal symptoms. Furthermore, the occurrence of diseases linked to vascular anomalies brought on by DR aids in diagnosing the condition. Nevertheless, the resources required for manually identifying… More >

  • Open Access

    ARTICLE

    Multi-Classification of Polyps in Colonoscopy Images Based on an Improved Deep Convolutional Neural Network

    Shuang Liu1,2,3, Xiao Liu1, Shilong Chang1, Yufeng Sun4, Kaiyuan Li1, Ya Hou1, Shiwei Wang1, Jie Meng5, Qingliang Zhao6, Sibei Wu1, Kun Yang1,2,3,*, Linyan Xue1,2,3,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5837-5852, 2023, DOI:10.32604/cmc.2023.034720

    Abstract Achieving accurate classification of colorectal polyps during colonoscopy can avoid unnecessary endoscopic biopsy or resection. This study aimed to develop a deep learning model that can automatically classify colorectal polyps histologically on white-light and narrow-band imaging (NBI) colonoscopy images based on World Health Organization (WHO) and Workgroup serrAted polypS and Polyposis (WASP) classification criteria for colorectal polyps. White-light and NBI colonoscopy images of colorectal polyps exhibiting pathological results were firstly collected and classified into four categories: conventional adenoma, hyperplastic polyp, sessile serrated adenoma/polyp (SSAP) and normal, among which conventional adenoma could be further divided into… More >

  • Open Access

    ARTICLE

    Pre-Impact and Impact Fall Detection Based on a Multimodal Sensor Using a Deep Residual Network

    Narit Hnoohom1, Sakorn Mekruksavanich2, Anuchit Jitpattanakul3,4,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3371-3385, 2023, DOI:10.32604/iasc.2023.036551

    Abstract Falls are the contributing factor to both fatal and nonfatal injuries in the elderly. Therefore, pre-impact fall detection, which identifies a fall before the body collides with the floor, would be essential. Recently, researchers have turned their attention from post-impact fall detection to pre-impact fall detection. Pre-impact fall detection solutions typically use either a threshold-based or machine learning-based approach, although the threshold value would be difficult to accurately determine in threshold-based methods. Moreover, while additional features could sometimes assist in categorizing falls and non-falls more precisely, the estimated determination of the significant features would be… More >

  • Open Access

    ARTICLE

    Deep Capsule Residual Networks for Better Diagnosis Rate in Medical Noisy Images

    P. S. Arthy1,*, A. Kavitha2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2959-2971, 2023, DOI:10.32604/iasc.2023.032511

    Abstract With the advent of Machine and Deep Learning algorithms, medical image diagnosis has a new perception of diagnosis and clinical treatment. Regrettably, medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques. However, the presence of noise images degrades both the diagnosis and clinical treatment processes. The existing intelligent methods suffer from the deficiency in handling the diverse range of noise in the versatile medical images. This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alleviate this challenge.… More >

  • Open Access

    ARTICLE

    Zero Watermarking Algorithm for Medical Image Based on Resnet50-DCT

    Mingshuai Sheng1, Jingbing Li1,2,*, Uzair Aslam Bhatti1,2,3, Jing Liu4, Mengxing Huang1,5, Yen-Wei Chen6

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 293-309, 2023, DOI:10.32604/cmc.2023.036438

    Abstract Medical images are used as a diagnostic tool, so protecting their confidentiality has long been a topic of study. From this, we propose a Resnet50-DCT-based zero watermarking algorithm for use with medical images. To begin, we use Resnet50, a pre-training network, to draw out the deep features of medical images. Then the deep features are transformed by DCT transform and the perceptual hash function is used to generate the feature vector. The original watermark is chaotic scrambled to get the encrypted watermark, and the watermark information is embedded into the original medical image by XOR… More >

Displaying 11-20 on page 2 of 40. Per Page