Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    Influence of Welding Residual Stress on the Structural Behaviour of Large-Span Steel Tube Arch Rib

    Chunling Yan1,2, Renzhang Yan1,2,*, Zhenxiu Zhan1, Xiyang Chen1, Yu Han3

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 1037-1056, 2025, DOI:10.32604/sdhm.2025.058780 - 30 June 2025

    Abstract The steel tube arch rib in a large-span concrete-filled steel tube arch bridge has a large span and diameter, which also leads to a larger weld seam scale. Large-scale welding seams will inevitably cause more obvious welding residual stress (WRS). For the purpose of studying the influence of WRS from large-scale welding seam on the mechanical properties of steel tube arch rib during arch rib splicing, test research and numerical simulation analysis on the WRS in arch rib splicing based on the Guangxi Pingnan Third Bridge, which is the world’s largest span concrete-filled steel… More >

  • Open Access

    PROCEEDINGS

    Deep Learning-Based Prediction of Material Elastic Constants and Residual Stresses of Orthotropic Materials from Moiré Interferometry

    Dong-Wook Lee1,*, Heungjo An2, Tae Yeon Kim3, Sungmun Lee4, Jide Oyebanji1, Prabakaran Balasubramanian1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011286

    Abstract This work analyzes the problems of material elastic constants identification and residual stresses determination in an orthotropic materials using hole drilling method. These problems are very important to understand mechanical performance of materials. A lot of optical method such as Moiré, laser speckle interferometry, digital image correlation or photoelasticity is developed to estimate displacement (or strain) fields or applied loads (or stresses) from images. These methods require a very complicated techniques, skill, and efforts to analysis images. But deep learning method based on a convolution neural network shows better performance in image analysis problems such… More >

  • Open Access

    PROCEEDINGS

    Study on the Effect of Welding Sequence on Residual Stress in Post Internal-Welding Joint of Bimetal Composite Pipe

    Zhenhua Gao1, Bin Han1,*, Shengyuan Niu1, Liying Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-4, 2024, DOI:10.32604/icces.2024.013339

    Abstract With the rapid development of industry and globalization, the demand and strategic importance of oil and natural gas have become increasingly significant, leading to energy extraction in more complex corrosive environments [1, 2]. Bimetallic composite pipes, which offer strength and corrosion resistance, exhibit promising potential. For the welding of bimetallic composite plates, it is optimal to follow the welding sequence of the base layer, transition layer, and inner layer [3, 4]. For the welding of bimetal composite pipes, due to the diameter limit, the inner layer is usually welded first, followed by the transition layer,… More >

  • Open Access

    PROCEEDINGS

    A Coupled Thermo-Mechanical Finite Element Method with Optimized Explicit Time Integration for Welding Distortion and Stress Analysis

    Hui Huang1,*, Yongbing Li1, Shuhui Li1, Ninshu Ma2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011348

    Abstract The sequentially coupled thermo-mechanical finite element analysis (FEA) with implicit iteration scheme is widely adopted for welding process simulation because the one-way coupling scheme is believed to be more efficient. However, such computational framework faces the bottleneck of scalability in large-scale analysis due to the exponential growth of computational burden with respect to the number of unknowns in a FEA model. In the present study, a fully coupled approach with explicit integration was developed to simulate fusion welding induced temperature, distortion, and residual stresses. A mass scaling and heat capacity inverse scaling technique was proposed More >

  • Open Access

    ARTICLE

    Fatigue Crack Propagation Law of Corroded Steel Box Girders in Long Span Bridges

    Ying Wang1,*, Longxiao Chao1, Jun Chen2, Songbai Jiang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 201-227, 2024, DOI:10.32604/cmes.2024.046129 - 16 April 2024

    Abstract In order to investigate the fatigue performance of orthotropic anisotropic steel bridge decks, this study realizes the simulation of the welding process through elastic-plastic finite element theory, thermal-structural sequential coupling, and the birth-death element method. The simulated welding residual stresses are introduced into the multiscale finite element model of the bridge as the initial stress. Furthermore, the study explores the impact of residual stress on crack propagation in the fatigue-vulnerable components of the corroded steel box girder. The results indicate that fatigue cracks at the weld toe of the top deck, the weld root of… More > Graphic Abstract

    Fatigue Crack Propagation Law of Corroded Steel Box Girders in Long Span Bridges

  • Open Access

    ARTICLE

    An Innovative Finite Element Geometric Modeling of Single-Layer Multi-Bead WAAMed Part

    Xiangman Zhou1,*, Jingping Qin1, Zichuan Fu1, Min Wang1, Youlu Yuan1, Junjian Fu1, Haiou Zhang2, Seyed Reza Elmi Hosseini3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2383-2401, 2024, DOI:10.32604/cmes.2023.029249 - 15 December 2023

    Abstract Finite element (FE) coupled thermal-mechanical analysis is widely used to predict the deformation and residual stress of wire arc additive manufacturing (WAAM) parts. In this study, an innovative single-layer multi-bead profile geometric modeling method through the isosceles trapezoid function is proposed to build the FE model of the WAAM process. Firstly, a straight-line model for overlapping beads based on the parabola function was established to calculate the optimal center distance. Then, the isosceles trapezoid-based profile was employed to replace the parabola profiles of the parabola-based overlapping model to establish an innovative isosceles trapezoid-based multi-bead overlapping… More >

  • Open Access

    PROCEEDINGS

    Localized Necking and Bulging of Finitely Deformed Residually Stressed Solid Cylinder

    Yang Liu1,*, Luis Dorfmann2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09499

    Abstract In this talk, we present some analytical results concerning localized instabilities in stretched soft cylinders with residual-stress effect. Within the framework of finite elasticity, a bifurcation analysis is carried out based on the incremental theory. It is found that with the residual stress effect taken into consideration additional singularities of the incremental equations appear. To overcome this difficulty we apply the Stroh formulism and an expansion methodology and derive a bifurcation condition. Then we consider three loading scenarios and perform a detailed analysis of the bifurcation behaviors. It turns out that the zero mode, giving More >

  • Open Access

    ARTICLE

    Dynamics along the epithelial-cancer biointerface: Hidden system complexities

    IVANA PAJIC-LIJAKOVIC*, MILAN MILIVOJEVIC

    BIOCELL, Vol.47, No.11, pp. 2321-2334, 2023, DOI:10.32604/biocell.2023.043796 - 27 November 2023

    Abstract The biointerface dynamics influence any cancer spreading through the epithelium since it is documented in the early stages some malignancies (like epithelial cancer). The altered rearrangement of epithelial cells has an impact on the development of cancer. Therefore, it is necessary to comprehend the underlying biological and physical mechanisms of this biointerface dynamics for early suppression of cancer. While the biological mechanisms include cell signaling and gene expression, the physical mechanisms are several physical parameters such as the epithelial-cancer interfacial tension, epithelial surface tension, and compressive stress accumulated within the epithelium. Although the segregation of… More > Graphic Abstract

    Dynamics along the epithelial-cancer biointerface: Hidden system complexities

  • Open Access

    PROCEEDINGS

    Investigation for Fast Prediction of Residual Stresses and Deformations of Metal Additive Manufacturing

    Yabin Yang1,*, Yanfei Wang1, Quan Li2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09842

    Abstract Residual stresses and deformations are one of the challenges needs to solve for metal additive manufacturing part. Finite element method plays an important role in predicting the residual stresses and deformations to reduce the experimental costs, and provides a powerful tool for the optimization of process parameters and scanning strategies of heat source. However, the key problem in simulation is the mismatch between the melt pool and the built part in both spatial and temporal scale. This would result in large discretization in both spatial and temporal domains in the simulation, which gives rise to… More >

  • Open Access

    ARTICLE

    A Methodology to Reduce Thermal Gradients Due to the Exothermic Reactions in Resin Transfer Molding Applications

    Aouatif Saad1,*, Mohammed EL Ganaoui2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 95-103, 2023, DOI:10.32604/fdmp.2023.022014 - 02 August 2022

    Abstract Resin transfer molding (RTM) is among the most used manufacturing processes for composite parts. Initially, the resin cure is initiated by heat supply to the mold. The supplementary heat generated during the reaction can cause thermal gradients in the composite, potentially leading to undesired residual stresses which can cause shrinkage and warpage. In the present numerical study of these processes, a one-dimensional finite difference method is used to predict the temperature evolution and the degree of cure in the course of the resin polymerization; the effect of some parameters on the thermal gradient is then More >

Displaying 1-10 on page 1 of 46. Per Page