Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (120)
  • Open Access

    ARTICLE

    A Deep Learning Framework for Heart Disease Prediction with Explainable Artificial Intelligence

    Muhammad Adil1, Nadeem Javaid1,*, Imran Ahmed2, Abrar Ahmed3, Nabil Alrajeh4,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071215 - 10 November 2025

    Abstract Heart disease remains a leading cause of mortality worldwide, emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention. However, existing Deep Learning (DL) approaches often face several limitations, including inefficient feature extraction, class imbalance, suboptimal classification performance, and limited interpretability, which collectively hinder their deployment in clinical settings. To address these challenges, we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture. The preprocessing stage involves label encoding and feature scaling. To address the issue of… More >

  • Open Access

    ARTICLE

    Impact of Data Processing Techniques on AI Models for Attack-Based Imbalanced and Encrypted Traffic within IoT Environments

    Yeasul Kim1, Chaeeun Won1, Hwankuk Kim2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-28, 2026, DOI:10.32604/cmc.2025.069608 - 10 November 2025

    Abstract With the increasing emphasis on personal information protection, encryption through security protocols has emerged as a critical requirement in data transmission and reception processes. Nevertheless, IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices, spanning a range of devices from non-encrypted ones to fully encrypted ones. Given the limited visibility into payloads in this context, this study investigates AI-based attack detection methods that leverage encrypted traffic metadata, eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices. Using the UNSW-NB15 and CICIoT-2023 dataset, encrypted and… More >

  • Open Access

    ARTICLE

    Ponzi Scheme Detection for Smart Contracts Based on Oversampling

    Yafei Liu1,2, Yuling Chen1,2,*, Xuewei Wang3, Yuxiang Yang2, Chaoyue Tan2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069152 - 10 November 2025

    Abstract As blockchain technology rapidly evolves, smart contracts have seen widespread adoption in financial transactions and beyond. However, the growing prevalence of malicious Ponzi scheme contracts presents serious security threats to blockchain ecosystems. Although numerous detection techniques have been proposed, existing methods suffer from significant limitations, such as class imbalance and insufficient modeling of transaction-related semantic features. To address these challenges, this paper proposes an oversampling-based detection framework for Ponzi smart contracts. We enhance the Adaptive Synthetic Sampling (ADASYN) algorithm by incorporating sample proximity to decision boundaries and ensuring realistic sample distributions. This enhancement facilitates the… More >

  • Open Access

    ARTICLE

    HS-APF-RRT*: An Off-Road Path-Planning Algorithm for Unmanned Ground Vehicles Based on Hierarchical Sampling and an Enhanced Artificial Potential Field

    Zhenpeng Jiang, Qingquan Liu*, Ende Wang

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068780 - 10 November 2025

    Abstract Rapidly-exploring Random Tree (RRT) and its variants have become foundational in path-planning research, yet in complex three-dimensional off-road environments their uniform blind sampling and limited safety guarantees lead to slow convergence and force an unfavorable trade-off between path quality and traversal safety. To address these challenges, we introduce HS-APF-RRT*, a novel algorithm that fuses layered sampling, an enhanced Artificial Potential Field (APF), and a dynamic neighborhood-expansion mechanism. First, the workspace is hierarchically partitioned into macro, meso, and micro sampling layers, progressively biasing random samples toward safer, lower-energy regions. Second, we augment the traditional APF by More >

  • Open Access

    ARTICLE

    LOEV-APO-MLP: Latin Hypercube Opposition-Based Elite Variation Artificial Protozoa Optimizer for Multilayer Perceptron Training

    Zhiwei Ye1,2,3, Dingfeng Song1, Haitao Xie1,2,3,*, Jixin Zhang1,2, Wen Zhou1,2, Mengya Lei1,2, Xiao Zheng1,2, Jie Sun1, Jing Zhou1, Mengxuan Li1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5509-5530, 2025, DOI:10.32604/cmc.2025.067342 - 23 October 2025

    Abstract The Multilayer Perceptron (MLP) is a fundamental neural network model widely applied in various domains, particularly for lightweight image classification, speech recognition, and natural language processing tasks. Despite its widespread success, training MLPs often encounter significant challenges, including susceptibility to local optima, slow convergence rates, and high sensitivity to initial weight configurations. To address these issues, this paper proposes a Latin Hypercube Opposition-based Elite Variation Artificial Protozoa Optimizer (LOEV-APO), which enhances both global exploration and local exploitation simultaneously. LOEV-APO introduces a hybrid initialization strategy that combines Latin Hypercube Sampling (LHS) with Opposition-Based Learning (OBL), thus… More >

  • Open Access

    ARTICLE

    Type-I Heavy-Tailed Burr XII Distribution with Applications to Quality Control, Skewed Reliability Engineering Systems and Lifetime Data

    Okechukwu J. Obulezi1,*, Hatem E. Semary2, Sadia Nadir3, Chinyere P. Igbokwe4, Gabriel O. Orji1, A. S. Al-Moisheer2, Mohammed Elgarhy5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2991-3027, 2025, DOI:10.32604/cmes.2025.069553 - 30 September 2025

    Abstract This study introduces the type-I heavy-tailed Burr XII (TIHTBXII) distribution, a highly flexible and robust statistical model designed to address the limitations of conventional distributions in analyzing data characterized by skewness, heavy tails, and diverse hazard behaviors. We meticulously develop the TIHTBXII’s mathematical foundations, including its probability density function (PDF), cumulative distribution function (CDF), and essential statistical properties, crucial for theoretical understanding and practical application. A comprehensive Monte Carlo simulation evaluates four parameter estimation methods: maximum likelihood (MLE), maximum product spacing (MPS), least squares (LS), and weighted least squares (WLS). The simulation results consistently show… More >

  • Open Access

    ARTICLE

    A Computationally Efficient Density-Aware Adversarial Resampling Framework Using Wasserstein GANs for Imbalance and Overlapping Data Classification

    Sidra Jubair1, Jie Yang1,2,*, Bilal Ali3, Walid Emam4, Yusra Tashkandy4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 511-534, 2025, DOI:10.32604/cmes.2025.066514 - 31 July 2025

    Abstract Effectively handling imbalanced datasets remains a fundamental challenge in computational modeling and machine learning, particularly when class overlap significantly deteriorates classification performance. Traditional oversampling methods often generate synthetic samples without considering density variations, leading to redundant or misleading instances that exacerbate class overlap in high-density regions. To address these limitations, we propose Wasserstein Generative Adversarial Network Variational Density Estimation WGAN-VDE, a computationally efficient density-aware adversarial resampling framework that enhances minority class representation while strategically reducing class overlap. The originality of WGAN-VDE lies in its density-aware sample refinement, ensuring that synthetic samples are positioned in underrepresented More >

  • Open Access

    ARTICLE

    SAMI-FGSM: Towards Transferable Attacks with Stochastic Gradient Accumulation

    Haolang Feng1,2, Yuling Chen1,2,*, Yang Huang1,2, Xuewei Wang3, Haiwei Sang4

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4469-4490, 2025, DOI:10.32604/cmc.2025.064896 - 30 July 2025

    Abstract Deep neural networks remain susceptible to adversarial examples, where the goal of an adversarial attack is to introduce small perturbations to the original examples in order to confuse the model without being easily detected. Although many adversarial attack methods produce adversarial examples that have achieved great results in the white-box setting, they exhibit low transferability in the black-box setting. In order to improve the transferability along the baseline of the gradient-based attack technique, we present a novel Stochastic Gradient Accumulation Momentum Iterative Attack (SAMI-FGSM) in this study. In particular, during each iteration, the gradient information More >

  • Open Access

    ARTICLE

    Chinese DeepSeek: Performance of Various Oversampling Techniques on Public Perceptions Using Natural Language Processing

    Anees Ara1, Muhammad Mujahid1, Amal Al-Rasheed2,*, Shaha Al-Otaibi2, Tanzila Saba1

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2717-2731, 2025, DOI:10.32604/cmc.2025.065566 - 03 July 2025

    Abstract DeepSeek Chinese artificial intelligence (AI) open-source model, has gained a lot of attention due to its economical training and efficient inference. DeepSeek, a model trained on large-scale reinforcement learning without supervised fine-tuning as a preliminary step, demonstrates remarkable reasoning capabilities of performing a wide range of tasks. DeepSeek is a prominent AI-driven chatbot that assists individuals in learning and enhances responses by generating insightful solutions to inquiries. Users possess divergent viewpoints regarding advanced models like DeepSeek, posting both their merits and shortcomings across several social media platforms. This research presents a new framework for predicting… More >

  • Open Access

    ARTICLE

    Addressing Class Overlap in Sonic Hedgehog Medulloblastoma Molecular Subtypes Classification Using Under-Sampling and SVD-Enhanced Multinomial Regression

    Isra Mohammed1, Mohamed Elhafiz M. Musa2, Murtada K. Elbashir3,*, Ayman Mohamed Mostafa3, Amin Ibrahim Adam4, Mahmood A. Mahmood3, Areeg S. Faggad5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3749-3763, 2025, DOI:10.32604/cmc.2025.063880 - 03 July 2025

    Abstract Sonic Hedgehog Medulloblastoma (SHH-MB) is one of the four primary molecular subgroups of Medulloblastoma. It is estimated to be responsible for nearly one-third of all MB cases. Using transcriptomic and DNA methylation profiling techniques, new developments in this field determined four molecular subtypes for SHH-MB. SHH-MB subtypes show distinct DNA methylation patterns that allow their discrimination from overlapping subtypes and predict clinical outcomes. Class overlapping occurs when two or more classes share common features, making it difficult to distinguish them as separate. Using the DNA methylation dataset, a novel classification technique is presented to address… More >

Displaying 1-10 on page 1 of 120. Per Page