Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (468)
  • Open Access

    ARTICLE

    Adaptive Deep Learning Model to Enhance Smart Greenhouse Agriculture

    Medhat A. Tawfeek1,2, Nacim Yanes3,4, Leila Jamel5,*, Ghadah Aldehim5, Mahmood A. Mahmood1,6

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2545-2564, 2023, DOI:10.32604/cmc.2023.042179

    Abstract The trend towards smart greenhouses stems from various factors, including a lack of agricultural land area owing to population concentration and housing construction on agricultural land, as well as water shortages. This study proposes building a full farming adaptation model that depends on current sensor readings and available datasets from different agricultural research centers. The proposed model uses a one-dimensional convolutional neural network (CNN) deep learning model to control the growth of strategic crops, including cucumber, pepper, tomato, and bean. The proposed model uses the Internet of Things (IoT) to collect data on agricultural operations and then uses this data… More >

  • Open Access

    ARTICLE

    Heat Transfer Characteristics for Solar Energy Aspect on the Flow of Tangent Hyperbolic Hybrid Nanofluid over a Sensor Wedge and Stagnation Point Surface

    Asmaa Habib Alanzi, N. Ameer Ahammad*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 179-197, 2023, DOI:10.32604/fhmt.2023.042009

    Abstract The conversion of solar radiation to thermal energy has recently attracted a lot of interest as the requirement for renewable heat and power grows. Due to their enhanced ability to promote heat transmission, nanofluids can significantly contribute to enhancing the efficiency of solar-thermal systems. This article focus solar energy aspect on the effects of the thermal radiation in the flow of a hyperbolic tangent nanofluid containing magnesium oxide (MgO) and silver (Ag) are the nanoparticle with the base fluid as kerosene through a wedge and stagnation. The system of hybrid nanofluid transport equations are transformed into ordinary differential systems using… More >

  • Open Access

    ARTICLE

    A Monitoring Method for Transmission Tower Foots Displacement Based on Wind-Induced Vibration Response

    Zhicheng Liu1, Long Zhao1,*, Guanru Wen1, Peng Yuan2, Qiu Jin1

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 541-555, 2023, DOI:10.32604/sdhm.2023.029760

    Abstract The displacement of transmission tower feet can seriously affect the safe operation of the tower, and the accuracy of structural health monitoring methods is limited at the present stage. The application of deep learning method provides new ideas for structural health monitoring of towers, but the current amount of tower vibration fault data is restricted to provide adequate training data for Deep Learning (DL). In this paper, we propose a DT-DL based tower foot displacement monitoring method, which firstly simulates the wind-induced vibration response data of the tower under each fault condition by finite element method. Then the vibration signal… More > Graphic Abstract

    A Monitoring Method for Transmission Tower Foots Displacement Based on Wind-Induced Vibration Response

  • Open Access

    ARTICLE

    An Intelligent Sensor Data Preprocessing Method for OCT Fundus Image Watermarking Using an RCNN

    Jialun Lin1, Qiong Chen1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1549-1561, 2024, DOI:10.32604/cmes.2023.029631

    Abstract Watermarks can provide reliable and secure copyright protection for optical coherence tomography (OCT) fundus images. The effective image segmentation is helpful for promoting OCT image watermarking. However, OCT images have a large amount of low-quality data, which seriously affects the performance of segmentation methods. Therefore, this paper proposes an effective segmentation method for OCT fundus image watermarking using a rough convolutional neural network (RCNN). First, the rough-set-based feature discretization module is designed to preprocess the input data. Second, a dual attention mechanism for feature channels and spatial regions in the CNN is added to enable the model to adaptively select… More >

  • Open Access

    REVIEW

    A Survey on Sensor- and Communication-Based Issues of Autonomous UAVs

    Pavlo Mykytyn1,2,*, Marcin Brzozowski1, Zoya Dyka1,2, Peter Langendoerfer1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1019-1050, 2024, DOI:10.32604/cmes.2023.029075

    Abstract The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasing steadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader than ever before. However, increasing the complexity of UAVs and decreasing the cost, both contribute to a lack of implemented security measures and raise new security and safety concerns. For instance, the issue of implausible or tampered UAV sensor measurements is barely addressed in the current research literature and thus, requires more attention from the research community. The goal of this survey is to extensively review… More >

  • Open Access

    ARTICLE

    Unweighted Voting Method to Detect Sinkhole Attack in RPL-Based Internet of Things Networks

    Shadi Al-Sarawi1, Mohammed Anbar1,*, Basim Ahmad Alabsi2, Mohammad Adnan Aladaileh3, Shaza Dawood Ahmed Rihan2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 491-515, 2023, DOI:10.32604/cmc.2023.041108

    Abstract The Internet of Things (IoT) consists of interconnected smart devices communicating and collecting data. The Routing Protocol for Low-Power and Lossy Networks (RPL) is the standard protocol for Internet Protocol Version 6 (IPv6) in the IoT. However, RPL is vulnerable to various attacks, including the sinkhole attack, which disrupts the network by manipulating routing information. This paper proposes the Unweighted Voting Method (UVM) for sinkhole node identification, utilizing three key behavioral indicators: DODAG Information Object (DIO) Transaction Frequency, Rank Harmony, and Power Consumption. These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant… More >

  • Open Access

    ARTICLE

    Cascade Human Activity Recognition Based on Simple Computations Incorporating Appropriate Prior Knowledge

    Jianguo Wang1, Kuan Zhang1,*, Yuesheng Zhao2,*, Xiaoling Wang2, Muhammad Shamrooz Aslam2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 79-96, 2023, DOI:10.32604/cmc.2023.040506

    Abstract The purpose of Human Activities Recognition (HAR) is to recognize human activities with sensors like accelerometers and gyroscopes. The normal research strategy is to obtain better HAR results by finding more efficient eigenvalues and classification algorithms. In this paper, we experimentally validate the HAR process and its various algorithms independently. On the base of which, it is further proposed that, in addition to the necessary eigenvalues and intelligent algorithms, correct prior knowledge is even more critical. The prior knowledge mentioned here mainly refers to the physical understanding of the analyzed object, the sampling process, the sampling data, the HAR algorithm,… More >

  • Open Access

    ARTICLE

    Intelligence COVID-19 Monitoring Framework Based on Deep Learning and Smart Wearable IoT Sensors

    Fadhil Mukhlif1,*, Norafida Ithnin1, Roobaea Alroobaea2, Sultan Algarni3, Wael Y. Alghamdi2, Ibrahim Hashem4

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 583-599, 2023, DOI:10.32604/cmc.2023.038757

    Abstract The World Health Organization (WHO) refers to the 2019 new coronavirus epidemic as COVID-19, and it has caused an unprecedented global crisis for several nations. Nearly every country around the globe is now very concerned about the effects of the COVID-19 outbreaks, which were previously only experienced by Chinese residents. Most of these nations are now under a partial or complete state of lockdown due to the lack of resources needed to combat the COVID-19 epidemic and the concern about overstretched healthcare systems. Every time the pandemic surprises them by providing new values for various parameters, all the connected research… More >

  • Open Access

    ARTICLE

    Stochastic Models to Mitigate Sparse Sensor Attacks in Continuous-Time Non-Linear Cyber-Physical Systems

    Borja Bordel Sánchez1,*, Ramón Alcarria2, Tomás Robles1

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3189-3218, 2023, DOI:10.32604/cmc.2023.039466

    Abstract Cyber-Physical Systems are very vulnerable to sparse sensor attacks. But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely. Therefore, in this paper, we propose a new non-linear generalized model to describe Cyber-Physical Systems. This model includes unknown multivariable discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical processes and random effects in the physical and computational worlds. Besides, the digitalization stage in hardware devices is represented too. Attackers and most critical sparse sensor attacks are described through a stochastic process. The reconstruction and protection mechanisms are based on a weighted… More >

  • Open Access

    ARTICLE

    Resource Allocation for IRS Assisted mmWave Wireless Powered Sensor Networks with User Cooperation

    Yonghui Lin1, Zhengyu Zhu2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 663-677, 2024, DOI:10.32604/cmes.2023.028584

    Abstract In this paper, we investigate IRS-aided user cooperation (UC) scheme in millimeter wave (mmWave) wireless-powered sensor networks (WPSN), where two single-antenna users are wireless powered in the wireless energy transfer (WET) phase first and then cooperatively transmit information to a hybrid access point (AP) in the wireless information transmission (WIT) phase, following which the IRS is deployed to enhance the system performance of the WET and WIT. We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots, power allocations, and the phase shifts of the IRS. Due to the non-convexity of the original problem, a semidefinite programming… More >

Displaying 31-40 on page 4 of 468. Per Page