Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (469)
  • Open Access

    ABSTRACT

    Dynamic Strain Sensing Using Adaptive Fiber Bragg Grating Sensors

    Yan-Jin Zhu, Yinian Zhu, Li Hui, Sridhar Krishnaswamy

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.1, pp. 29-30, 2011, DOI:10.3970/icces.2011.020.029

    Abstract Invited Lecture

    Prof. Sridhar Krishnaswamy

    Northwestern University, USA More >

  • Open Access

    ABSTRACT

    Nonlinear third-order shear deformation FE simulation of the sensor output voltage of piezolaminated plates

    Thang Duy Vu, Ruediger Schmidt1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.13, No.2, pp. 35-42, 2009, DOI:10.3970/icces.2009.013.035

    Abstract Two geometrically nonlinear finite plate elements incorporating piezoelectric layers are presented, based either on first- or third-order shear deformation theory. Numerical tests are performed for the sensor output voltage of a piezolaminated plate. More >

  • Open Access

    ABSTRACT

    Buckling Detection Using Carbon Nanotube Reinforced Composite Sensors

    Enrique García-Macías1, Luis Rodríguez-Tembleque1, Felipe García-Sánchez2, Andrés Sáez1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.1, pp. 103-103, 2019, DOI:10.32604/icces.2019.05220

    Abstract Enhancing the strength-to-weight ratio in structural engineering has traditionally attracted great research efforts from both scientist and practicing engineers. Development of new composite materials and/or alternative structural configurations have led to slender designs, which may be prone to buckling failure. Meanwhile, the most recent advances in the field of Nanotechnology have allowed the development of new composite materials with not only low weight and adequate load-bearing capacity, but also additional self-sensing capabilities. Such multifunctional composites open a vast range of possibilities in the field of Structural Health Monitoring. In particular, this work analyzes-from a numerical perspective-the effective implementation of carbon… More >

  • Open Access

    ABSTRACT

    Experimental and Theoretical Investigations on Carbon Nanotube-Based Materials for Sensors and Actuators

    Erik T. Thostenson1, Chunyu Li1, Tsu-Wei Chou1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.1, pp. 29-34, 2007, DOI:10.3970/icces.2007.003.029

    Abstract With their well-known novel mechanical and electrical properties, carbon nanotubes are inherently multifunctional. Toward the development of multifunctional composite materials we have experimentally and theoretically investigated the use of carbon nanotubes as sensors and actuators. In this research work, we consider the nanotube within an external electric field with non-uniform charge distribution. Subsequently the charge induced deformations are investigated. We also demonstrate that conducting carbon nanotube networks formed in an epoxy polymer matrix can be utilized as highly-sensitive sensors for detecting the onset, nature and evolution of damage in advanced polymer-based composites. Using direct-current measurements the internal damage accumulation can… More >

  • Open Access

    ABSTRACT

    Bridge Health Mornitoring using Wireless Sensor Networks

    Byung-wan Jo1, Do-keun Kim2, Sung-keun Song3, Suk-un Kim4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.1, No.4, pp. 167-172, 2007, DOI:10.3970/icces.2007.001.167

    Abstract Wireless sensor networks bring new challenges to Bridge monitoring. To monitor a bridge, behavior, including vibration and displacement, must be measured to analyze the health of the structure based on measured and collected data. The collected data can be used to compute modal properties of the bridge. A bridge is moved by external forces, including wind, seismic activity, and traffic. So it is very hard reliance of safety through a preexistence method which uses Data Logger. Dynamic behavior of a bridge is difficult to measure because of costs and installation methods. In this paper, a new method, using a U-Smart… More >

  • Open Access

    ARTICLE

    A Perceptron Algorithm for Forest Fire Prediction Based on Wireless Sensor Networks

    Haoran Zhu1, Demin Gao1,2,*, Shuo Zhang1

    Journal on Internet of Things, Vol.1, No.1, pp. 25-31, 2019, DOI:10.32604/jiot.2019.05897

    Abstract Forest fire prediction constitutes a significant component of forest management. Timely and accurate forest fire prediction will greatly reduce property and natural losses. A quick method to estimate forest fire hazard levels through known climatic conditions could make an effective improvement in forest fire prediction. This paper presents a description and analysis of a forest fire prediction methods based on machine learning, which adopts WSN (Wireless Sensor Networks) technology and perceptron algorithms to provide a reliable and rapid detection of potential forest fire. Weather data are gathered by sensors, and then forwarded to the server, where a fire hazard index… More >

  • Open Access

    ARTICLE

    LDPC Code’s Decoding Algorithms for Wireless Sensor Network: a Brief Review

    Weidong Fang1, Wuxiong Zhang1,2, Lianhai Shan1,*, Biruk Assefa3, Wei Chen4

    Journal of New Media, Vol.1, No.1, pp. 45-50, 2019, DOI:10.32604/jnm.2019.05786

    Abstract As an effective error correction technology, the Low Density Parity Check Code (LDPC) has been researched and applied by many scholars. Meanwhile, LDPC codes have some prominent performances, which involves close to the Shannon limit, achieving a higher bit rate and a fast decoding. However, whether these excellent characteristics are suitable for the resource-constrained Wireless Sensor Network (WSN), it seems to be seldom concerned. In this article, we review the LDPC code’s structure brief.ly, and them classify and summarize the LDPC codes’ construction and decoding algorithms, finally, analyze the applications of LDPC code for WSN. We believe that our contributions… More >

  • Open Access

    ARTICLE

    Vapor and Pressure Sensors Based on Cellulose Nanofibers and Carbon Nanotubes Aerogel with Thermoelectric Properties

    Rajendran Muthuraj, Abhishek Sachan, Mickael Castro*, Jean-François Feller, Bastien Seantier*, Yves Grohens

    Journal of Renewable Materials, Vol.6, No.3, pp. 277-287, 2018, DOI:10.7569/JRM.2017.634182

    Abstract In this work, thermally insulating and electrically conductive aerogels were prepared from cellulose nanofibers (CNF) and carbon nanotubes (CNTs) by environmentally friendly freeze-drying process. The thermal conductivity of neat CNF aerogel is 24 mW/(m·K) with a density of 0.025 g/cm3. With the addition of CNTs into CNF aerogel, the electrical conductivity was significantly increased while the thermal conductivity was increased to 38 mW/(m·K). Due to these interesting properties, the Seebeck coefficient and the figure of merit (ZT) of the CNF/CNTs aerogels were measured and showed that CNF/CNTs aerogel thermoelectric properties can be improved. The compressibility and electrical resistance of the… More >

  • Open Access

    ARTICLE

    Paracetamol Sensitive Cellulose-Based Electrochemical Sensors

    Maxime Pontié1*, Serge Foukmeniok Mbokou1,2, Jean-Philippe Bouchara1, Bienvenue Razafimandimby1, Sylvie Egloff1, Ornella Dzilingomo1, Pierre-Yves Pontalier3, Ignas Kenfack Tonle<

    Journal of Renewable Materials, Vol.6, No.3, pp. 242-250, 2018, DOI:10.7569/JRM.2017.634169

    Abstract Electrochemical determination of paracetamol (PCT) was successfully performed using carbon paste electrodes (CPEs) modified with treated coffee husks (CHt) or cellulose powder (Ce). Scanning electron microscopy was used to characterize unmodified or modified CPEs prior to their use. The electrochemical oxidation of PCT was investigated using square wave voltammetry (SWV) and cyclic voltammetry (CV). The oxidation current density of PCT was two-fold higher with the CPE-CHt sensor and 30% higher with CPE-Ce in comparison with the unmodified CPE, and this correlated with the higher hydrophilicity of the modified electrodes. Using SWV for the electrochemical analysis of PCT, carbon paste electrode… More >

  • Open Access

    REVIEW

    Nanocellulose-Enabled Electronics, Energy Harvesting Devices, Smart Materials and Sensors: A Review

    Ronald Sabo1*, Aleksey Yermakov2, Chiu Tai Law3, Rani Elhajjar4

    Journal of Renewable Materials, Vol.4, No.5, pp. 297-312, 2016, DOI:10.7569/JRM.2016.634114

    Abstract Cellulose nanomaterials have a number of interesting and unique properties that make them well-suited for use in electronics applications such as energy harvesting devices, actuators and sensors. Cellulose nanofibrils and nanocrystals have good mechanical properties, high transparency, and low coefficient of thermal expansion, among other properties that facilitate both active and inactive roles in electronics and related devices. For example, these nanomaterials have been demonstrated to operate as substrates for flexible electronics and displays, to improve the efficiency of photovoltaics, to work as a component of magnetostrictive composites and to act as a suitable lithium ion battery separator membrane. A… More >

Displaying 441-450 on page 45 of 469. Per Page