Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (63)
  • Open Access

    ARTICLE

    Three-Dimensional Molecular Phase Separation and Flow Patterns with Novel Multilevel Fluidics

    Jui-Ming Yang*, Philip R. LeDuc∗,†

    Molecular & Cellular Biomechanics, Vol.3, No.2, pp. 69-78, 2006, DOI:10.3970/mcb.2006.003.069

    Abstract Inorganic and organic integrated systems detect, process, and respond to signals from solid media. Advances in fluidic systems have offered an alternative to traditional signaling methods through the development of aqueous signaling systems. Here, we show an experimentally simple mechanically governed fluidic system that creates three-dimensional molecular multiphase separation in a combination of discrete and continuous gradients analogous to digital and analog signals that can be used for controlled spatiotemporal cellular stimulation. We accomplish the pattern formation by fabricating a compartmentalized multi-level fluidics device where a network of capillaries converges into a main channel. Simultaneous control of the fluid streams… More >

  • Open Access

    ARTICLE

    Forced Dissociation of Selectin-ligand Complexes Using Steered Molecular Dynamics Simulation

    Shouqin Lü1, Mian Long1,2

    Molecular & Cellular Biomechanics, Vol.2, No.4, pp. 161-178, 2005, DOI:10.3970/mcb.2005.002.161

    Abstract Selectin-ligand interactions are crucial to such biological processes as inflammatory cascade or tumor metastasis. How transient formation and dissociation of selectin-ligand bonds in blood flow are coupled to molecular conformation at atomic level, however, has not been well understood. In this study, steered molecular dynamics (SMD) simulations were used to elucidate the intramolecular and intermolecular conformational evolutions involved in forced dissociation of three selectin-ligand systems: the construct consisting of P-selectin lectin (Lec) and epidermal growth factor (EGF)-like domains (P-LE) interacting with synthesized sulfoglycopeptide or SGP-3, P-LE with sialyl Lewis X (sLeX), and E-LE with sLeX. SMD simulations were based on… More >

  • Open Access

    ARTICLE

    Factorial Experiment Design in the Front Velocity Modeling Approach Applied to Chromatographic Separation of Glucose and Fructose

    A. Prieto-Moreno1, L.D.Tavares Câmara2, O. Llanes-Santiago1, A. J. Silva Neto2

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.6, pp. 441-462, 2015, DOI:10.3970/cmes.2015.106.441

    Abstract This work deals with a statistical approach to the uncertainty propagation analysis when estimating the kinetic mass transfer parameters used to model a chromatographic column in the Simulated Moving Bed. The chromatographic column modeling was performed using the new front velocity approach. The uncertainty propagation analysis of operational factors intervening in the chromatographic process to estimated parameters was made using the response surface methodology. The application of the factorial experimental design allowed us to establish those operational factors showing a greater influence on continuous chromatography. Besides, the chromatographic regions, where factors cause a greater output variation as well as their… More >

  • Open Access

    ARTICLE

    Vibration Control and Separation of a Device Scanning an Elastic Plate

    Shueei-Muh Lin1, Min-Jun Teng2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.3, pp. 189-213, 2014, DOI:10.3970/cmes.2014.103.189

    Abstract The control and separation of a scanning device moving along an arbitrary trajectory on an elastic plate is investigated. The system is a moving mass problem and is difficult to analyze directly. A semi-analytical method for the movingmass model is presented here. Without vibration control, the separation of a vehicle from a plate is likely to happen. The mechanism of separation of a vehicle from a plate is studied. Moreover, the effects of several parameters on vibration separation and the critical speed of system are studied. An effective control methodology is proposed for suppressing vibration and separation This model is… More >

  • Open Access

    ARTICLE

    A transport model based on kinetic theory for water vapor separation in hollow fiber membranes

    D. Bergmair1,2, S. J. Metz1, H. C. de Lange2, A. A. van Steenhoven2

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.1, pp. 1-15, 2013, DOI:10.3970/cmes.2013.091.001

    Abstract A method to predict the permeation of water vapor, present in a laminar flowing humid carrier gas, through a hollow fiber membrane is presented. The method uses simulation particles that move like molecules, according to the kinetic gas theory, but carry the physical properties of an ensemble of molecules which they statistically represent. With this approach an ideal operational window for membrane modules can be found and parameters tested for, can be varied over orders of magnitude. The results show that the right dimensioning is essential for the efficient use of the membrane area. More >

  • Open Access

    ARTICLE

    Steady Separated Flow Past Elliptic Cylinders Using a Stabilized Finite-Element Method

    Subhankar Sen1, Sanjay Mittal2, Gautam Biswas1

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.1, pp. 1-28, 2012, DOI:10.3970/cmes.2012.086.001

    Abstract The steady flow around elliptic cylinders is investigated using a stabilized finite-element method. The Reynolds number, Re, is based on cylinder major axis and free-stream speed. Results are presented for Re ≤ 40 and 0° ≤ α ≤ 90°, where α is angle of attack. Cylinder aspect ratios, AR considered are 0.2 (thin), 0.5, 0.8 (thick) and 1.0. Results for the laminar separation Reynolds number, Res available in the literature are only for thin cylinder and exhibit large scatter. Also, very limited information is available for separation angle. The present study attempts to provide this data. In addition, issues concerning… More >

  • Open Access

    ARTICLE

    High Velocity Impact Simulation of Brittle Materials with Node Separation Scheme in Parallel Computing Environment

    Ji Joong Moon1, Seung Jo Kim1, Minhyung Lee2

    CMES-Computer Modeling in Engineering & Sciences, Vol.59, No.3, pp. 275-300, 2010, DOI:10.3970/cmes.2010.059.275

    Abstract This paper describes the parallelization of contact/impact simulation for fracture modeling of brittle materials using a node separation scheme (NSS). We successfully demonstrated the fracture modeling of brittle materials using a cohesive fracture model. Since a NSS continuously generates new free surfaces as the computation progresses, the methodology requires increased computational time. To perform a simulation within a reasonable time period, a parallelization study is conducted. Particular methods for effective parallelization, especially for brittle materials, are described in detail. The crucial and most difficult strategy is the management of the data structure and communication needed to handle new contact nodes… More >

  • Open Access

    ARTICLE

    Binary Collisions of Immiscible Liquid Drops for Liquid Encapsulation

    Carole Planchette1, Elise Lorenceau1, Günter Brenn2

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 279-302, 2011, DOI:10.3970/fdmp.2011.007.279

    Abstract This work is dedicated to a general description of collisions between two drops of immiscible liquids. Our approach is mainly experimental and allows us to describe the outcomes of such collisions according to a set of relevant parameters. Varying the relative velocity U as well as the impact parameter X we can build for each pair of investigated liquids a nomogram X,U showing three possible regimes: coalescence, head-on separation and off-center separation. In this paper, we also study the influence of the liquid properties, i.e. viscosity, density, surface and interfacial tensions using a set of aqueous glycerol solutions together with… More >

  • Open Access

    ARTICLE

    An Innovative Approach of Salt Separation Using the Soret Effect

    R. Abdeljabar1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 217-230, 2011, DOI:10.3970/fdmp.2011.007.217

    Abstract In this paper, we discuss a new technique for desalination based on the principles of the Soret effect. In particular, the method stems from the peculiar behavior of the solute in a solution of sodium chloride (i.e. salty water layer) of uniform concentration being less or equal to 5wt% under the effect of an imposed temperature gradient with average temperature equal to 12oC. The Soret coefficient may be positive or negative according to whether the temperature of the solution is above or below 12oC. As two diffusion processes (one parallel to the temperature gradient and the other anti-parallel) can occur… More >

  • Open Access

    ARTICLE

    Impact of the Vibrations on Soret Separation in Binary and Ternary Mixtures

    S. Srinivasan1, M. Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 201-216, 2011, DOI:10.3970/fdmp.2011.007.201

    Abstract CFD simulations have been made to understand the impact of the vibrations of the ISS on the thermodiffusion process. Simulations were made for two ternary hydrocarbon mixtures and one binary associated mixture. While one of the ternary mixture was at a pressure of 35 MPa, the second ternary mixture as well as the binary mixture were at a pressure of 0.101325 MPa. The analysis of the results showed that imposing the ISS vibrations had a profound effect on the Soret effect in all three systems. More precisely, in all three mixtures, a single convective flow cell is established. Such a… More >

Displaying 51-60 on page 6 of 63. Per Page