Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (191)
  • Open Access

    ARTICLE

    Influence of Wind Turbine Structural Parameters on Wind Shear and Tower Shadow Effect

    Yajing Zhang1, Chaoyang Song2, Zhiguo Li2,*

    Energy Engineering, Vol.120, No.2, pp. 501-510, 2023, DOI:10.32604/ee.2022.021423

    Abstract To overcome the problems of natural decreases in power quality, and to eliminate wind speed fluctuation due to wind shear and tower shadow effect arising from wind turbine structural parameters, an improved prediction model accounting for the dual effect of wind shear and tower shadow is, in this paper, built. Compared to the conventional prediction model, the proposed model contains a new constraint condition, which makes the disturbance term caused by the tower shadow effect always negative so that the prediction result is closer to the actual situation. Furthermore, wind turbine structural parameters such as hub height, rotor diameter, the… More > Graphic Abstract

    Influence of Wind Turbine Structural Parameters on Wind Shear and Tower Shadow Effect

  • Open Access

    ARTICLE

    Effect of Inclined Tension Crack on Rock Slope Stability by SSR Technique

    Ch. Venkat Ramana*, Niranjan Ramchandra Thote, Arun Kumar Singh

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1205-1214, 2023, DOI:10.32604/iasc.2023.031838

    Abstract The tension cracks and joints in rock or soil slopes affect their failure stability. Prediction of rock or soil slope failure is one of the most challenging tasks in the earth sciences. The actual slopes consist of inhomogeneous materials, complex morphology, and erratic joints. Most studies concerning the failure of rock slopes primarily focused on determining Factor of Safety (FoS) and Critical Slip Surface (CSS). In this article, the effect of inclined tension crack on a rock slope failure is studied numerically with Shear Strength Reduction Factor (SRF) method. An inclined Tension Crack (TC) influences the magnitude and location of… More >

  • Open Access

    ARTICLE

    Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage: Theory, Experiments and Numerical Modelling

    Lisheng Luo1,*, Xinran Xie1, Yongqiang Zhang1, Xiaofeng Zhang2, Xinyue Cui1

    Journal of Renewable Materials, Vol.11, No.2, pp. 791-809, 2023, DOI:10.32604/jrm.2022.022539

    Abstract Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects, which usually depends on empirical parameters. There is no systematic theoretical method to predict the stiffness and shear distribution of glulam beams in elastic-plastic stage, and consequently, the failure of such glulam beams cannot be predicted effectively. To address these issues, an analytical method considering material nonlinearity was proposed for glulam beams, and the calculating equations of deflection and shear stress distribution for different failure modes were established. The proposed method was verified by experiments and numerical models under the corresponding… More > Graphic Abstract

    Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage: Theory, Experiments and Numerical Modelling

  • Open Access

    ARTICLE

    Valorization of Tunisian Pomegranate Peel Tannins in Green Adhesives Formulation

    Houda Saad1,2,*, Antonio Pizzi3,4, Bertrand Charrier2, Naceur Ayed1, Karsten Rode5, Fatima Charrier - El Bouhtoury2

    Journal of Renewable Materials, Vol.3, No.1, pp. 34-43, 2015, DOI:10.7569/JRM.2014.634130

    Abstract The possible use of Tunisian pomegranate tannins in wood adhesive formulation was studied for the fi rst time. Colorimetric tests, Fourier transformed infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization time-of-fl ight (MALDI-TOF) mass spectrometry were used to examine pomegranate tannins. Analysis showed that pomegranate peels are rich in hydrolyzable tannins. The Stiasny number tests showed the low reactivity of pomegranate tannin extract to formaldehyde and thus the diffi culty of using it in wood adhesive formulation. Thermomechanical analysis (TMA) and strength analysis of pomegranate tannin/hexamine-based resin showed weak bonding properties. More >

  • Open Access

    ARTICLE

    Shear Behaviors of Steel-Plate Connections for Timber-Concrete Composite Beams with Prefabricated Concrete Slabs

    Benkai Shi, Bowen Huang, Huifeng Yang*, Yongqing Dai, Sijian Chen

    Journal of Renewable Materials, Vol.11, No.1, pp. 349-361, 2023, DOI:10.32604/jrm.2023.022343

    Abstract To promote the development of timber-concrete composite (TCC) structures, it is necessary to propose the assembly-type connections with high assembly efficiency and shear performances. This article presented the experimental results of the innovative steel-plate connections for TCC beams using prefabricated concrete slabs. The steel-plate connections consisted of the screws and the steel-plates. The steel-plates were partly embedded in the concrete slabs. The concrete slabs and the timber beams were connected by screws through the steel-plates. The parameters researched in this article included screw number, angle steel as the reinforcement for anchoring, and shallow notches on the timber surface to restrict… More >

  • Open Access

    ARTICLE

    Modeling and Optimization of the Shear Strength of Cassava Starch-Based Adhesives Using Artificial Intelligence Methods

    Weixing Zhang, Chunxia He*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3263-3283, 2022, DOI:10.32604/jrm.2022.020516

    Abstract With the exponential growth of the computing power, machine learning techniques have been successfully used in various applications. This paper intended to predict and optimize the shear strength of single lap cassava starchbased adhesive joints for comparison with the application of artificial intelligence (AI) methods. The shear strength was firstly determined by the experiment with three independent experimental variables (starch content, NaOH concentration and reaction temperature). The analysis of range (ANORA) and analysis of variance (ANOVA) were applied to investigate the optimal combination and the significance of each factor for the shear strength based on the orthogonal experiment. The performance… More >

  • Open Access

    ARTICLE

    Skin Lesion Classification System Using Shearlets

    S. Mohan Kumar*, T. Kumanan

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 833-844, 2023, DOI:10.32604/csse.2023.022385

    Abstract The main cause of skin cancer is the ultraviolet radiation of the sun. It spreads quickly to other body parts. Thus, early diagnosis is required to decrease the mortality rate due to skin cancer. In this study, an automatic system for Skin Lesion Classification (SLC) using Non-Subsampled Shearlet Transform (NSST) based energy features and Support Vector Machine (SVM) classifier is proposed. At first, the NSST is used for the decomposition of input skin lesion images with different directions like 2, 4, 8 and 16. From the NSST’s sub-bands, energy features are extracted and stored in the feature database for training.… More >

  • Open Access

    ARTICLE

    Secured Medical Data Transfer Using Reverse Data Hiding System Through Steganography

    S. Aiswarya*, R. Gomathi

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 969-982, 2022, DOI:10.32604/iasc.2022.025475

    Abstract Reversible Data Hiding (RDH) is the process of transferring secret data hidden inside cover media to the recipient so the recipient can securely retrieve both the secret data and cover media. The RDH approach is applied in this study in the field of telemedicine, and medical-secret data is conveyed privately via medical cover video. Morse code-based data encryption technique tends to encrypt the medical-secret data by compression using the Arithmetic coding technique. Discrete Shearlet transform (DST) compresses the selected frame from the medical cover video and the compressed secret data is embedded into the compressed frame using logical operations. On… More >

  • Open Access

    ARTICLE

    Remote Sensing Image Retrieval Based on 3D-Local Ternary Pattern (LTP) Features and Non-subsampled Shearlet Transform (NSST) Domain Statistical Features

    Hilly Gohain Baruah*, Vijay Kumar Nath, Deepika Hazarika

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 137-164, 2022, DOI:10.32604/cmes.2022.018339

    Abstract With the increasing popularity of high-resolution remote sensing images, the remote sensing image retrieval (RSIR) has always been a topic of major issue. A combined, global non-subsampled shearlet transform (NSST)-domain statistical features (NSSTds) and local three dimensional local ternary pattern (3D-LTP) features, is proposed for high-resolution remote sensing images. We model the NSST image coefficients of detail subbands using 2-state laplacian mixture (LM) distribution and its three parameters are estimated using Expectation-Maximization (EM) algorithm. We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband, and… More >

  • Open Access

    ARTICLE

    Study of Effect of Boundary Conditions on Patient-Specific Aortic Hemodynamics

    Qingzhuo Chi1, Huimin Chen1, Shiqi Yang1, Lizhong Mu1,*, Changjin Ji2, Ying He1, Yong Luan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 31-47, 2022, DOI:10.32604/cmes.2022.018286

    Abstract Cardiovascular computational fluid dynamics (CFD) based on patient-specific modeling is increasingly used to predict changes in hemodynamic parameters before or after surgery/interventional treatment for aortic dissection (AD). This study investigated the effects of flow boundary conditions (BCs) on patient-specific aortic hemodynamics. We compared the changes in hemodynamic parameters in a type A dissection model and normal aortic model under different BCs: inflow from the auxiliary and truncated structures at aortic valve, pressure control and Windkessel model outflow conditions, and steady and unsteady inflow conditions. The auxiliary entrance remarkably enhanced the physiological authenticity of numerical simulations of flow in the ascending… More >

Displaying 21-30 on page 3 of 191. Per Page