Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ARTICLE

    Shear Stress-mediated Angiogenesis Through Id1 Relevant to Atherosclerosis

    Yidan Chen#,1, Kang Zhang#,1, Juhui Qiu1, Shicheng He1, Junyang Huang2, Lu Huang1, Dongyu Jia3, Bo Ling1, Da Sun4, Xiang Xie1, Tieying Yin*,1, Guixue Wang*,1

    Molecular & Cellular Biomechanics, Vol.14, No.2, pp. 83-100, 2017, DOI:10.3970/mcb.2017.014.081

    Abstract Abnormal shear stress in the blood vessel is an important stimulating factor for the formation of angiogenesis and vulnerable plaques. This paper intended to explore the role of shear stress-regulated Id1 in angiogenesis. First, we applied a carotid artery ring ligation to create local stenosis in ApoE-/- mice. Then, 3D geometry of the vessel network was reconstructed based on MRI, and our analysis of computational fluid dynamics revealed that wall shear stress of the proximal region was much higher than that of the distal region. In addition, results from histological staining of the proximal region found More >

  • Open Access

    ARTICLE

    Anatomical Variations in Circle of Willis and Intracranial Aneurysm Formation

    Zhen Liu1, Yan Cai1, Guo-Zhong Chen2, Guang-Ming Lu, Zhi-Yong Li1,3,*

    Molecular & Cellular Biomechanics, Vol.14, No.1, pp. 19-31, 2017, DOI:10.3970/mcb.2017.014.019

    Abstract Background: Intracranial aneurysm (IA) can be commonly found in the circle of Willis (CoW), and a higher morbidity of IA is found to be associated with a higher percentage of an incomplete CoW. Hemodynamic factors are believed to play an important role in aneurysm formation. However, how the anatomical variations in CoW lead to hemodynamic difference and what hemodynamic parameters play important roles in aneurysm formation have not been quantified and assessed. Methods and Results: Thirty patients were included and based one computed tomography angiography, they were divided into three groups (10 patients per group):… More >

  • Open Access

    ARTICLE

    Enhanced External Counterpulsation Treatment May Intervene The Advanced Atherosclerotic Plaque Progression by Inducing The Variations of Mechanical Factors: A 3D FSI Study Based on in vivo Animal Experiment

    Jianhang Du1,2,3, Liang Wang4

    Molecular & Cellular Biomechanics, Vol.12, No.4, pp. 249-263, 2015, DOI:10.3970/mcb.2015.012.249

    Abstract Growing evidences suggest that long-term enhanced external counterpulsation (EECP) treatment can inhibit the initiation of atherosclerotic lesion by improving the hemodynamic environment in aortas. However, whether this kind procedure will intervene the progression of advanced atherosclerotic plaque remains elusive and causes great concern in its clinical application presently. In the current paper, a pilot study combining animal experiment and numerical simulation was conducted to investigate the acute mechanical stress variations during EECP intervention, and then to assess the possible chronic effects. An experimentally induced hypercholesterolemic porcine model was developed and the basic hemodynamic measurement was… More >

  • Open Access

    ARTICLE

    Effect of Porosity and Magnetic Field Dependent Viscosity on Revolving Ferrofluid Flow in the Presence of Stationary Disk

    Anupam Bh,ari1, Vipin Kumar2

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.3, pp. 359-375, 2014, DOI:10.3970/fdmp.2014.010.359

    Abstract The purpose of this paper is to study the flow characteristics of a ferrofluid revolving through a porous medium with a magnetic-field-dependent viscosity in the presence of a stationary disk. A Finite Difference Method is employed to discretize the set of nonlinear coupled differential equations involved in the problem. The discretized nonlinear equations, in turn, are solved by a Newton method (using MATLAB) taking the initial guess with the help of a PDE Solver. Results displayed in graphical form are used to assess the effect of the variable viscosity and porosity parameters on the velocity More >

  • Open Access

    ABSTRACT

    Non-Newtonian Effects on the Wall Shear Stress of the Blood Flow in Stenotic Right Coronary Arteries

    B. Liu1, D. Tang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.2, pp. 55-60, 2011, DOI:10.3970/icces.2011.017.055

    Abstract The effects of the non-Newtonian blood viscosity on the wall shear stress (WSS) of the blood flows in stenotic right coronary arteries have been investigated by computer simulations. The numerical calculations were performed using the Newtonian Model and the non-Newtonian models with the fluid obeying the Power Law and the Carreau models for the simulations of unsteady blood flows. The differences on the spatial and temporal WSS distribution patterns due to the different blood properties were compared. The computational results demonstrate that the blood viscosity properties do not affect the spatial WSS distribution pattern qualitatively.… More >

  • Open Access

    ARTICLE

    Structure - Function Relationships in the Stem Cell's Mechanical World B: Emergent Anisotropy of the Cytoskeleton Correlates to Volume and Shape Changing Stress Exposure

    Hana Chang*, Melissa L. Knothe Tate∗,†,‡

    Molecular & Cellular Biomechanics, Vol.8, No.4, pp. 297-318, 2011, DOI:10.3970/mcb.2011.008.297

    Abstract In the preceding study (Part A), we showed that prescribed seeding conditions as well as seeding density can be used to subject multipotent stem cells (MSCs) to volume changing stresses and that changes in volume of the cell are associated with changes in shape, but not volume, of the cell nucleus. In the current study, we aim to control the mechanical milieu of live cells using these prescribed seeding conditions concomitant to delivery of shape changing stresses via fluid flow, while observing adaptation of the cytoskeleton, a major cellular transducer that modulates cell shape, stiffness… More >

  • Open Access

    ARTICLE

    Influence of non-Newtonian Properties of Blood on the Wall Shear Stress in Human Atherosclerotic Right Coronary Arteries

    Biyue Liu, Dalin Tang

    Molecular & Cellular Biomechanics, Vol.8, No.1, pp. 73-90, 2011, DOI:10.3970/mcb.2011.008.073

    Abstract The objective of this work is to investigate the effect of non-Newtonian properties of blood on the wall shear stress (WSS) in atherosclerotic coronary arteries using both Newtonian and non-Newtonian models. Numerical simulations were performed to examine how the spatial and temporal WSS distributions are influenced by the stenosis size, blood viscosity, and flow rate. The computational results demonstrated that blood viscosity properties had considerable effect on the magnitude of the WSS, especially where disturbed flow was observed. The WSS distribution is highly non-uniform both temporally and spatially, especially in the stenotic region. The maximum More >

  • Open Access

    ARTICLE

    Computer Simulations of Atherosclerotic Plaque Growth in Coronary Arteries

    Biyue Liu, Dalin Tang

    Molecular & Cellular Biomechanics, Vol.7, No.4, pp. 193-202, 2010, DOI:10.3970/mcb.2010.007.193

    Abstract A three dimensional mathematical model with a linear plaque growth function was developed to investigate the geometrical adaptation of atherosclerotic plaques in coronary arteries and study the influences of flow wall shear stress (WSS), blood viscosity and the inlet flow rate on the growth of atherosclerotic plaques using computational plaque growth simulations. The simulation results indicated that the plaque wall thickness at the neck of the stenosis increased at a decreasing rate in the atherosclerosis progression. The simulation results also showed a strong dependence of the plaque wall thickness increase on the blood viscosity and More >

  • Open Access

    ARTICLE

    A Displacement Solution to Transverse Shear Loading of Composite Beams by BEM

    E.J. Sapountzakis1, V.G. Mokos2

    CMC-Computers, Materials & Continua, Vol.10, No.1, pp. 1-40, 2009, DOI:10.3970/cmc.2009.010.001

    Abstract In this paper the boundary element method is employed to develop a displacement solution for the general transverse shear loading problem of composite beams of arbitrary constant cross section. The composite beam (thin or thick walled) consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli and are firmly bonded together. The analysis of the beam is accomplished with respect to a coordinate system that has its origin at the centroid of the cross section, while its axes are not necessarily the… More >

  • Open Access

    ARTICLE

    Short-Term Shear Stress Induces Rapid Actin Dynamics in Living Endothelial Cells

    Colin K. Choi*, Brian P. Helmke∗,†

    Molecular & Cellular Biomechanics, Vol.5, No.4, pp. 247-258, 2008, DOI:10.3970/mcb.2008.005.247

    Abstract Hemodynamic shear stress guides a variety of endothelial phenotype characteristics, including cell morphology, cytoskeletal structure, and gene expression profile. The sensing and processing of extracellular fluid forces may be mediated by mechanotransmission through the actin cytoskeleton network to intracellular locations of signal initiation. In this study, we identify rapid actin-mediated morphological changes in living subconfluent and confluent bovine aortic endothelial cells (ECs) in response to onset of unidirectional steady fluid shear stress (15 dyn/cm2). After flow onset, subconfluent cells exhibited dynamic edge activity in lamellipodia and small ruffles in the downstream and side directions for the… More >

Displaying 31-40 on page 4 of 47. Per Page