Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (162)
  • Open Access

    ARTICLE

    Digestibility, Antioxidant and Anti-Inflammatory Activities of Pecan Nutshell (Carya illioinensis) Extracts

    María Janeth Rodríguez-Roque1, Carmen Lizette Del-Toro-Sánchez2,*, Janet Madeline Chávez-Ayala1, Ricardo Iván González-Vega2, Liliana Maribel Pérez-Pérez2, Esteban Sánchez-Chávez3, Nora Aideé Salas-Salazar1, Juan Manuel Soto-Parra1, Rey David Iturralde-García2, María Antonia Flores-Córdova1,*

    Journal of Renewable Materials, Vol.10, No.10, pp. 2569-2580, 2022, DOI:10.32604/jrm.2022.021163

    Abstract Phenolic compounds are related to high biological activity, avoiding oxidation in food and human systems. Nutshells are by-products derived from the pecan nut processing that contain important amounts of phenols which biological activity must be studied. This research aimed to evaluate the antioxidant (DPPH, ABTS, FRAP and hemolysis) and anti-inflammatory activities of shell extracts from pecan nuts harvested during the crop production cycle 2018 and 2019, as well as the in vitro digestibility of their phenolic compounds, including flavonoids. Results showed that extracts from the crop production cycle 2018 obtained the highest yield, while those from 2019 contained the highest… More > Graphic Abstract

    Digestibility, Antioxidant and Anti-Inflammatory Activities of Pecan Nutshell (<i>Carya illioinensis</i>) Extracts

  • Open Access

    ARTICLE

    The Fabrication of Water-Soluble Chitosan Capsule Shell Modified by Alginate and Gembili Starch (Dioscorea esculenta L)

    Yatim Lailun Ni’mah*, Suprapto Suprapto, Harmami, Ita Ulfin, Puput Asmaul Fauziyah

    Journal of Renewable Materials, Vol.10, No.9, pp. 2365-2376, 2022, DOI:10.32604/jrm.2022.020001

    Abstract Capsule shells have been successfully fabricated from water-soluble chitosan (WSC) with the addition of alginate and Gembili starch. WSC was synthesized from crab shell chitosan by depolymerization reaction. The capsule shells were made with the composition of WSC: Alginate, 2:1, 3:1 and 4:1 (w/w) with and without the addition of Gembili starch. Gembili starch was added with a ratio of Alginate: Starch, 1:1 (w/w). The capsule shell properties were evaluated according to Indonesian Pharmacopoeia standard. The solubility test showed that the capsule shells were comply with the standard. The highest degrees of swelling in water and HCl 0.1 N solution… More > Graphic Abstract

    The Fabrication of Water-Soluble Chitosan Capsule Shell Modified by Alginate and Gembili Starch (<i>Dioscorea esculenta</i> L)

  • Open Access

    ARTICLE

    Application of an Artificial Neural Network Method for the Prediction of the Tube-Side Fouling Resistance in a Shell-And-Tube Heat Exchanger

    Rania Jradi1,*, Christophe Marvillet2, Mohamed-Razak Jeday1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1511-1519, 2022, DOI:10.32604/fdmp.2022.021925

    Abstract The accumulation of undesirable deposits on the heat exchange surface represents a critical issue in industrial heat exchangers. Taking experimental measurements of the fouling is relatively difficult and, often, this method does not lead to precise results. To overcome these problems, in the present study, a new approach based on an Artificial Neural Network (ANN) is used to predict the fouling resistance as a function of specific measurable variables in the phosphoric acid concentration process. These include: the phosphoric acid inlet and outlet temperatures, the steam temperature, the phosphoric acid density, the phosphoric acid volume flow rate circulating in the… More >

  • Open Access

    ARTICLE

    Analysis of Lateritic Soil Reinforced with Palm Kernel Shells for Use as a Sub-Base Layer for Low-Traffic Roads

    Joel Koti1,2,*, Crespin P. Yabi3, Mohamed Gibigaye1, Anne Millien2, Christophe Petit2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1469-1482, 2022, DOI:10.32604/fdmp.2022.021902

    Abstract In tropical areas, palm oil production generates significant amounts of waste, including palm kernel shells. The use of this waste in the civil engineering sector, presents a very challenging task. In the present study, the production of lateritic soil (A-2 in GTR classification and A-7-6 (9) in HRB classification) reinforced with palm kernel shells is considered. In order to improve their performances, these materials are mixed using the Fuller’s parabolic law. Moreover, experimental tests are used to characterize the physical and mechanical geotechnical properties of the lateritic soil. After characterizing the matrix (i.e., lateritic soil) and the inclusions (i.e., palm… More >

  • Open Access

    REVIEW

    Pathways for Sustainable Utilization of Waste Chicken Eggshell

    Omojola Awogbemi1,*, Daramy Vandi Von Kallon1, Victor Sunday Aigbodion2,3

    Journal of Renewable Materials, Vol.10, No.8, pp. 2217-2246, 2022, DOI:10.32604/jrm.2022.019152

    Abstract Chicken eggshell is one of the most common wastes generated from households, restaurants and other food processing outlets. Waste Chicken Eggshells (WCES) also constitutes an environmental nuisance and ends up discarded at dumping site with no consideration of further usage. The main constituent of WCES is calcium carbonate from which calcium or calcium oxide can be extracted for various applications. This current effort reviews recently published literature on the diverse applications of WCES. The considered utilization avenues include catalysts for biofuel production, construction industry, wastewater purification, industrial sector, food industry, medical, and agricultural applications. The specific areas of application apart… More > Graphic Abstract

    Pathways for Sustainable Utilization of Waste Chicken Eggshell

  • Open Access

    ARTICLE

    Study on Microwave Pretreatment Technology to Improve the Effect of Shellac Impregnation of Fast-Growing Chinese Fir

    Xiya Yu1, Nianfeng Wei2, Qisong Liu2, Zhiyong Wu2, Mizi Fan3, Weigang Zhao1,*, Qinzhi Zeng1,*

    Journal of Renewable Materials, Vol.10, No.8, pp. 2041-2053, 2022, DOI:10.32604/jrm.2022.018027

    Abstract To improve the mechanical properties of fast-growing Chinese fir (Cunnighamia lanceolate), expand its range of application, increase its value, and avoid the environmental pollution caused by impregnation with synthetic resin, Chinese fir was impregnated with a shellac solution. Since the shellac solution was difficult to penetrate into fast-growing Chinese fir, so microwave pretreatment was used to irradiate the wood to improve the permeability. This study investigated the effects of four factors, including the content of moisture in the wood before it was microwaved, the chamber pressure of microwave, the time of microwaving and the vacuum impregnation on the mechanical properties… More > Graphic Abstract

    Study on Microwave Pretreatment Technology to Improve the Effect of Shellac Impregnation of Fast-Growing Chinese Fir

  • Open Access

    ARTICLE

    Synthesis of a Novel TiO2@Ag3PO4 Core-Shell Structure with Enhanced Photocatalytic Performance

    Chao Wei1,2, Zhongjin Peng2, Yunfei Chen3, Yanhai Cheng1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 973-984, 2022, DOI:10.32604/fdmp.2022.019772

    Abstract Ag3PO4 exhibits a high photocatalytic activity if exposed to visible light, however, it displays bottlenecks such as poor cycle-stability and mediocre ability to degrade methyl orange (MO) because of limited adsorption of MO molecules onto its surface. In this study, nano TiO2 prepared by a one-step method was combined with Ag3PO4 to form a TiO2@Ag3PO4 heterojunction in order to improve this material both in terms of photocatalysis and photostability. After adding a KH-570 silane coupling agent, the photocatalytic performance of TiO2@Ag3PO4 could be improved even further, with the degradation rate of MO maintained at more than 90% after three cycles… More >

  • Open Access

    ARTICLE

    Peridynamic Modeling of Brittle Fracture in Mindlin-Reissner Shell Theory

    Sai Li1, Xin Lai2,*, Lisheng Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 715-746, 2022, DOI:10.32604/cmes.2022.018544

    Abstract In this work, we modeled the brittle fracture of shell structure in the framework of Peridynamics Mindlin-Reissener shell theory, in which the shell is described by material points in the mean-plane with its drilling rotation neglected in kinematic assumption. To improve the numerical accuracy, the stress-point method is utilized to eliminate the numerical instability induced by the zero-energy mode and rank-deficiency. The crack surface is represented explicitly by stress points, and a novel general crack criterion is proposed based on that. Instead of the critical stretch used in common peridynamic solid, it is convenient to describe the material failure by… More >

  • Open Access

    ARTICLE

    Shape Sensing of Thin Shell Structure Based on Inverse Finite Element Method

    Zhanjun Wu1, Tengteng Li1, Jiachen Zhang2, Yifan Wu3, Jianle Li1, Lei Yang1, Hao Xu1,*

    Structural Durability & Health Monitoring, Vol.16, No.1, pp. 1-14, 2022, DOI:10.32604/sdhm.2022.019554

    Abstract Shape sensing as a crucial component of structural health monitoring plays a vital role in real-time actuation and control of smart structures, and monitoring of structural integrity. As a model-based method, the inverse finite element method (iFEM) has been proved to be a valuable shape sensing tool that is suitable for complex structures. In this paper, we propose a novel approach for the shape sensing of thin shell structures with iFEM. Considering the structural form and stress characteristics of thin-walled structure, the error function consists of membrane and bending section strains only which is consistent with the Kirchhoff–Love shell theory.… More >

  • Open Access

    ARTICLE

    Metaheuristic Based Resource Scheduling Technique for Distributed Robotic Control Systems

    P. Anandraj1,*, S. Ramabalan2

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 795-811, 2022, DOI:10.32604/csse.2022.022107

    Abstract The design of controllers for robots is a complex system that is to be dealt with several tasks in real time for enabling the robots to function independently. The distributed robotic control system can be used in real time for resolving various challenges such as localization, motion controlling, mapping, route planning, etc. The distributed robotic control system can manage different kinds of heterogenous devices. Designing a distributed robotic control system is a challenging process as it needs to operate effectually under different hardware configurations and varying computational requirements. For instance, scheduling of resources (such as communication channel, computation unit, robot… More >

Displaying 31-40 on page 4 of 162. Per Page