Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (55)
  • Open Access

    ARTICLE

    An Improved Reinforcement Learning-Based 6G UAV Communication for Smart Cities

    Vi Hoai Nam1, Chu Thi Minh Hue2, Dang Van Anh1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070605 - 10 November 2025

    Abstract Unmanned Aerial Vehicles (UAVs) have become integral components in smart city infrastructures, supporting applications such as emergency response, surveillance, and data collection. However, the high mobility and dynamic topology of Flying Ad Hoc Networks (FANETs) present significant challenges for maintaining reliable, low-latency communication. Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable. To overcome these limitations, this paper proposes an improved routing protocol based on reinforcement learning. This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware. The proposed method optimizes the selection of… More >

  • Open Access

    ARTICLE

    Hybrid AI-IoT Framework with Digital Twin Integration for Predictive Urban Infrastructure Management in Smart Cities

    Abdullah Alourani1, Mehtab Alam2,*, Ashraf Ali3, Ihtiram Raza Khan4, Chandra Kanta Samal2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-32, 2026, DOI:10.32604/cmc.2025.070161 - 10 November 2025

    Abstract The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management. Earlier approaches have often advanced one dimension—such as Internet of Things (IoT)-based data acquisition, Artificial Intelligence (AI)-driven analytics, or digital twin visualization—without fully integrating these strands into a single operational loop. As a result, many existing solutions encounter bottlenecks in responsiveness, interoperability, and scalability, while also leaving concerns about data privacy unresolved. This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing, distributed intelligence, and simulation-based decision support. The… More >

  • Open Access

    ARTICLE

    Intrusion Detection and Security Attacks Mitigation in Smart Cities with Integration of Human-Computer Interaction

    Abeer Alnuaim*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-33, 2026, DOI:10.32604/cmc.2025.069110 - 10 November 2025

    Abstract The rapid digitalization of urban infrastructure has made smart cities increasingly vulnerable to sophisticated cyber threats. In the evolving landscape of cybersecurity, the efficacy of Intrusion Detection Systems (IDS) is increasingly measured by technical performance, operational usability, and adaptability. This study introduces and rigorously evaluates a Human-Computer Interaction (HCI)-Integrated IDS with the utilization of Convolutional Neural Network (CNN), CNN-Long Short Term Memory (LSTM), and Random Forest (RF) against both a Baseline Machine Learning (ML) and a Traditional IDS model, through an extensive experimental framework encompassing many performance metrics, including detection latency, accuracy, alert prioritization, classification… More >

  • Open Access

    ARTICLE

    Graph Neural Network-Assisted Lion Swarm Optimization for Traffic Congestion Prediction in Intelligent Urban Mobility Systems

    Meshari D. Alanazi1, Gehan Elsayed2,*, Turki M. Alanazi3, Anis Sahbani4, Amr Yousef5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2277-2309, 2025, DOI:10.32604/cmes.2025.070726 - 26 November 2025

    Abstract Traffic congestion plays a significant role in intelligent transportation systems (ITS) due to rapid urbanization and increased vehicle concentration. The congestion is dependent on multiple factors, such as limited road occupancy and vehicle density. Therefore, the transportation system requires an effective prediction model to reduce congestion issues in a dynamic environment. Conventional prediction systems face difficulties in identifying highly congested areas, which leads to reduced prediction accuracy. The problem is addressed by integrating Graph Neural Networks (GNN) with the Lion Swarm Optimization (LSO) framework to tackle the congestion prediction problem. Initially, the traffic information is… More >

  • Open Access

    ARTICLE

    Interpretable Federated Learning Model for Cyber Intrusion Detection in Smart Cities with Privacy-Preserving Feature Selection

    Muhammad Sajid Farooq1, Muhammad Saleem2, M.A. Khan3,4, Muhammad Farrukh Khan5, Shahan Yamin Siddiqui6, Muhammad Shoukat Aslam7, Khan M. Adnan8,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5183-5206, 2025, DOI:10.32604/cmc.2025.069641 - 23 October 2025

    Abstract The rapid evolution of smart cities through IoT, cloud computing, and connected infrastructures has significantly enhanced sectors such as transportation, healthcare, energy, and public safety, but also increased exposure to sophisticated cyber threats. The diversity of devices, high data volumes, and real-time operational demands complicate security, requiring not just robust intrusion detection but also effective feature selection for relevance and scalability. Traditional Machine Learning (ML) based Intrusion Detection System (IDS) improves detection but often lacks interpretability, limiting stakeholder trust and timely responses. Moreover, centralized feature selection in conventional IDS compromises data privacy and fails to… More >

  • Open Access

    REVIEW

    A Comprehensive Review on Urban Resilience via Fault-Tolerant IoT and Sensor Networks

    Hitesh Mohapatra*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 221-247, 2025, DOI:10.32604/cmc.2025.068338 - 29 August 2025

    Abstract Fault tolerance is essential for reliable and sustainable smart city infrastructure. Interconnected IoT systems must function under frequent faults, limited resources, and complex conditions. Existing research covers various fault-tolerant methods. However, current reviews often lack system-level critique and multidimensional analysis. This study provides a structured review of fault tolerance strategies across layered IoT architectures in smart cities. It evaluates fault detection, containment, and recovery techniques using specific metrics. These include fault visibility, propagation depth, containment score, and energy-resilience trade-offs. The analysis uses comparative tables, architecture-aware discussions, and conceptual plots. It investigates the impact of fault… More >

  • Open Access

    ARTICLE

    C-BIVM: A Cognitive-Based Integrity Verification Model for IoT-Driven Smart Cities

    Radhika Kumari1, Kiranbir Kaur1, Ahmad Almogren2, Ayman Altameem3, Salil Bharany4,*, Yazeed Yasin Ghadi5, Ateeq Ur Rehman6,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5509-5525, 2025, DOI:10.32604/cmc.2025.064247 - 30 July 2025

    Abstract The exponential growth of the Internet of Things (IoT) has revolutionized various domains such as healthcare, smart cities, and agriculture, generating vast volumes of data that require secure processing and storage in cloud environments. However, reliance on cloud infrastructure raises critical security challenges, particularly regarding data integrity. While existing cryptographic methods provide robust integrity verification, they impose significant computational and energy overheads on resource-constrained IoT devices, limiting their applicability in large-scale, real-time scenarios. To address these challenges, we propose the Cognitive-Based Integrity Verification Model (C-BIVM), which leverages Belief-Desire-Intention (BDI) cognitive intelligence and algebraic signatures to… More >

  • Open Access

    ARTICLE

    AI-Driven Sentiment-Enhanced Secure IoT Communication Model Using Resilience Behavior Analysis

    Menwa Alshammeri1, Mamoona Humayun2,*, Khalid Haseeb3, Ghadah Naif Alwakid1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 433-446, 2025, DOI:10.32604/cmc.2025.065660 - 09 June 2025

    Abstract Wireless technologies and the Internet of Things (IoT) are being extensively utilized for advanced development in traditional communication systems. This evolution lowers the cost of the extensive use of sensors, changing the way devices interact and communicate in dynamic and uncertain situations. Such a constantly evolving environment presents enormous challenges to preserving a secure and lightweight IoT system. Therefore, it leads to the design of effective and trusted routing to support sustainable smart cities. This research study proposed a Genetic Algorithm sentiment-enhanced secured optimization model, which combines big data analytics and analysis rules to evaluate… More >

  • Open Access

    ARTICLE

    Integrating Edge Intelligence with Blockchain-Driven Secured IoT Healthcare Optimization Model

    Khulud Salem Alshudukhi1, Mamoona Humayun2,*, Ghadah Naif Alwakid1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1973-1986, 2025, DOI:10.32604/cmc.2025.063077 - 16 April 2025

    Abstract The Internet of Things (IoT) and edge computing have substantially contributed to the development and growth of smart cities. It handled time-constrained services and mobile devices to capture the observing environment for surveillance applications. These systems are composed of wireless cameras, digital devices, and tiny sensors to facilitate the operations of crucial healthcare services. Recently, many interactive applications have been proposed, including integrating intelligent systems to handle data processing and enable dynamic communication functionalities for crucial IoT services. Nonetheless, most solutions lack optimizing relaying methods and impose excessive overheads for maintaining devices’ connectivity. Alternatively, data More >

  • Open Access

    ARTICLE

    A Latency-Aware and Fault-Tolerant Framework for Resource Scheduling and Data Management in Fog-Enabled Smart City Transportation Systems

    Ibrar Afzal1, Noor ul Amin1,*, Zulfiqar Ahmad1,*, Abdulmohsen Algarni2

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1377-1399, 2025, DOI:10.32604/cmc.2024.057755 - 03 January 2025

    Abstract The deployment of the Internet of Things (IoT) with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses, smart cities, and smart transportation systems. Fog computing tackles a range of challenges, including processing, storage, bandwidth, latency, and reliability, by locally distributing secure information through end nodes. Consisting of endpoints, fog nodes, and back-end cloud infrastructure, it provides advanced capabilities beyond traditional cloud computing. In smart environments, particularly within smart city transportation systems, the abundance of devices and nodes poses significant challenges related… More >

Displaying 1-10 on page 1 of 55. Per Page