Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (602)
  • Open Access

    ARTICLE

    Multimodality Medical Image Fusion Based on Pixel Significance with Edge-Preserving Processing for Clinical Applications

    Bhawna Goyal1, Ayush Dogra2, Dawa Chyophel Lepcha1, Rajesh Singh3, Hemant Sharma4, Ahmed Alkhayyat5, Manob Jyoti Saikia6,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4317-4342, 2024, DOI:10.32604/cmc.2024.047256

    Abstract Multimodal medical image fusion has attained immense popularity in recent years due to its robust technology for clinical diagnosis. It fuses multiple images into a single image to improve the quality of images by retaining significant information and aiding diagnostic practitioners in diagnosing and treating many diseases. However, recent image fusion techniques have encountered several challenges, including fusion artifacts, algorithm complexity, and high computing costs. To solve these problems, this study presents a novel medical image fusion strategy by combining the benefits of pixel significance with edge-preserving processing to achieve the best fusion performance. First, the method employs a cross-bilateral… More >

  • Open Access

    ARTICLE

    ANALYTICAL SOLUTION FOR A CLASS OF FLAT PLATE CONJUGATE CONVECTIVE HEAT TRANSFER PROBLEMS

    Antti Lehtinena, Reijo Karvinenb,∗

    Frontiers in Heat and Mass Transfer, Vol.2, No.4, pp. 1-6, 2011, DOI:10.5098/hmt.v2.4.3004

    Abstract Analytical solutions for three different flat plate conjugate heat transfer cases are presented. The cases are as follows:transient heat transfer of a thin plate with uniform heat generation; the Luikov problem in which one plate surface is kept in a constant temperature and the other one is cooled by forced convection ; and a modified Luikov problem with heat generation on one surface and convection on both surfaces of the plate. All the cases are solved for both laminar and turbulent flows with P r ≥ 1. The solutions in the paper are based on the superposition principle and analytical… More >

  • Open Access

    ARTICLE

    NUMERICAL SOLUTIONS FOR A NANOFLUID PAST OVER A STRETCHING CIRCULAR CYLINDER WITH NON-UNIFORM HEAT SOURCE

    A. Rasekha,*, D.D. Ganjib, S. Tavakolib

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-6, 2012, DOI:10.5098/hmt.v3.4.3003

    Abstract The present paper deals with the analysis of boundary layer flow and heat transfer of a nanofluid over a stretching circular cylinder in the presence of non-uniform heat source/sink. The governing system of partial differential equations is converted to ordinary differential equations by using similarity transformations, which are then solved numerically using the Runge–Kutta–Fehlberg method with shooting technique. The solutions for the temperature and nanoparticle concentration distributions depend on six parameters, Prandtl number Pr, Lewis number Le, the Brownian motion parameter Nb, the thermophoresis parameter Nt, and non-uniform heat generation/absorption parameters A*, B*. Numerical results are presented both in tabular… More >

  • Open Access

    ARTICLE

    Learning Epipolar Line Window Attention for Stereo Image Super-Resolution Reconstruction

    Xue Li, Hongying Zhang*, Zixun Ye, Xiaoru Huang

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2847-2864, 2024, DOI:10.32604/cmc.2024.047093

    Abstract Transformer-based stereo image super-resolution reconstruction (Stereo SR) methods have significantly improved image quality. However, existing methods have deficiencies in paying attention to detailed features and do not consider the offset of pixels along the epipolar lines in complementary views when integrating stereo information. To address these challenges, this paper introduces a novel epipolar line window attention stereo image super-resolution network (EWASSR). For detail feature restoration, we design a feature extractor based on Transformer and convolutional neural network (CNN), which consists of (shifted) window-based self-attention ((S)W-MSA) and feature distillation and enhancement blocks (FDEB). This combination effectively solves the problem of global… More >

  • Open Access

    ARTICLE

    Intelligent Solution System for Cloud Security Based on Equity Distribution: Model and Algorithms

    Sarah Mustafa Eljack1,*, Mahdi Jemmali2,3,4, Mohsen Denden6,7, Mutasim Al Sadig1, Abdullah M. Algashami1, Sadok Turki5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1461-1479, 2024, DOI:10.32604/cmc.2023.040919

    Abstract In the cloud environment, ensuring a high level of data security is in high demand. Data planning storage optimization is part of the whole security process in the cloud environment. It enables data security by avoiding the risk of data loss and data overlapping. The development of data flow scheduling approaches in the cloud environment taking security parameters into account is insufficient. In our work, we propose a data scheduling model for the cloud environment. The model is made up of three parts that together help dispatch user data flow to the appropriate cloud VMs. The first component is the… More >

  • Open Access

    ARTICLE

    Stability and Error Analysis of Reduced-Order Methods Based on POD with Finite Element Solutions for Nonlocal Diffusion Problems

    Haolun Zhang1, Mengna Yang1, Jie Wei2, Yufeng Nie2,*

    Digital Engineering and Digital Twin, Vol.2, pp. 49-77, 2024, DOI:10.32604/dedt.2023.044180

    Abstract This paper mainly considers the formulation and theoretical analysis of the reduced-order numerical method constructed by proper orthogonal decomposition (POD) for nonlocal diffusion problems with a finite range of nonlocal interactions. We first set up the classical finite element discretization for nonlocal diffusion equations and briefly explain the difference between nonlocal and partial differential equations (PDEs). Nonlocal models have to handle double integrals when using finite element methods (FEMs), which causes the generation of algebraic systems to be more challenging and time-consuming, and discrete systems have less sparsity than those for PDEs. So we establish a reduced-order model (ROM) for… More >

  • Open Access

    ARTICLE

    A Novel Method for Linear Systems of Fractional Ordinary Differential Equations with Applications to Time-Fractional PDEs

    Sergiy Reutskiy1, Yuhui Zhang2,*, Jun Lu3,*, Ciren Pubu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1583-1612, 2024, DOI:10.32604/cmes.2023.044878

    Abstract This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations (FODEs) which have been widely used in modeling various phenomena in engineering and science. An approximate solution of the system is sought in the form of the finite series over the Müntz polynomials. By using the collocation procedure in the time interval, one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure. This technique also serves as the basis for solving the time-fractional partial differential equations (PDEs). The modified radial basis… More >

  • Open Access

    ARTICLE

    RLAT: Lightweight Transformer for High-Resolution Range Profile Sequence Recognition

    Xiaodan Wang*, Peng Wang, Yafei Song, Qian Xiang, Jingtai Li

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 217-246, 2024, DOI:10.32604/csse.2023.039846

    Abstract High-resolution range profile (HRRP) automatic recognition has been widely applied to military and civilian domains. Present HRRP recognition methods have difficulty extracting deep and global information about the HRRP sequence, which performs poorly in real scenes due to the ambient noise, variant targets, and limited data. Moreover, most existing methods improve the recognition performance by stacking a large number of modules, but ignore the lightweight of methods, resulting in over-parameterization and complex computational effort, which will be challenging to meet the deployment and application on edge devices. To tackle the above problems, this paper proposes an HRRP sequence recognition method… More >

  • Open Access

    PROCEEDINGS

    Simulation of Wave Propagation Through Inhomogeneous Medium Waveguides Based on Green’s Functions

    Wenzhi Xu1, ZhuoJia Fu1,*, Qiang Xi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.010437

    Abstract Acoustic wave propagation through an inhomogeneous medium may lead to undergo substantial modification. This paper proposed a Green’s functions-based method for the simulation of wave propagation through inhomogeneous medium waveguides. Under ideal conditions, a modified wave equation is derived by variable transformations, in which only the wave speed varies with spatial coordinates. Based on the modified wave equation the acoustic Green’s functions are derived. Then, the localized method of fundamental solution (LMFS) in conjunction with the acoustic Green’s functions is introduced to solve the modified wave equation. In the LMFS, the acoustic Green’s function is considered as its basic function… More >

  • Open Access

    PROCEEDINGS

    The Instability Mechanism of Moving Contact Line on the Surface of Soluble Solids

    Xudong Chen1,2, Quanzi Yuan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09318

    Abstract The wetting and instability of liquids on the surface of soluble solids is a problem of interface stability at multiple scales, which is coupled by mechanics and chemistry. This problem is crucial to application fields such as micro-nano processing and microscopic observation. In this work, the instability process of moving contact lines on the surfaces of soluble solids is investigated in experiments, theories, and simulations. Based on the unique shapes of the surfaces of soluble solids caused by instability in experiments, the concept of pagoda instability is proposed. Then the Cahn-Hilliard interfaces are developed to establish the evolution model of… More >

Displaying 11-20 on page 2 of 602. Per Page