Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (713)
  • Open Access

    ARTICLE

    Solar Photovoltaic System as a Sustainable Solution for Electric Load Shortage in Baghdad: A Design and Economic Study

    Fadhil M. Oleiwi1, Jaber O. Dahloos2, Amer Resen Kalash3, Hasanain A. Abdul Wahhab3, Miqdam T. Chaichan1,4,*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073313 - 27 January 2026

    Abstract In the present study, researchers examined a solar off-grid-connected photovoltaic system for a family house in the city of Baghdad. The design was created with the help of the “How to Design PV Program” and the “Renewable Energy Investment Calculator (REICAL)” software (Version 1.1). In Iraq, the national grid provides around 71% of the overall electricity demand, though this drops to nearly 50% during extremely hot and cold months, where the supply alternates between four hours on and four hours off. During the off periods, power is generated by local generators at high costs. To… More >

  • Open Access

    ARTICLE

    Enhancing IoT-Enabled Electric Vehicle Efficiency: Smart Charging Station and Battery Management Solution

    Supriya Wadekar1,*, Shailendra Mittal1, Ganesh Wakte2, Rajshree Shinde2

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.071761 - 27 December 2025

    Abstract Rapid evolutions of the Internet of Electric Vehicles (IoEVs) are reshaping and modernizing transport systems, yet challenges remain in energy efficiency, better battery aging, and grid stability. Typical charging methods allow for EVs to be charged without thought being given to the condition of the battery or the grid demand, thus increasing energy costs and battery aging. This study proposes a smart charging station with an AI-powered Battery Management System (BMS), developed and simulated in MATLAB/Simulink, to increase optimality in energy flow, battery health, and impractical scheduling within the IoEV environment. The system operates through… More >

  • Open Access

    ARTICLE

    BAID: A Lightweight Super-Resolution Network with Binary Attention-Guided Frequency-Aware Information Distillation

    Jiajia Liu1,*, Junyi Lin2, Wenxiang Dong2, Xuan Zhao2, Jianhua Liu2, Huiru Li3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.071397 - 09 December 2025

    Abstract Single Image Super-Resolution (SISR) seeks to reconstruct high-resolution (HR) images from low-resolution (LR) inputs, thereby enhancing visual fidelity and the perception of fine details. While Transformer-based models—such as SwinIR, Restormer, and HAT—have recently achieved impressive results in super-resolution tasks by capturing global contextual information, these methods often suffer from substantial computational and memory overhead, which limits their deployment on resource-constrained edge devices. To address these challenges, we propose a novel lightweight super-resolution network, termed Binary Attention-Guided Information Distillation (BAID), which integrates frequency-aware modeling with a binary attention mechanism to significantly reduce computational complexity and parameter… More >

  • Open Access

    ARTICLE

    Improving Real-Time Animal Detection Using Group Sparsity in YOLOv8: A Solution for Animal-Toy Differentiation

    Zia Ur Rehman1, Ahmad Syed2,*, Abu Tayab3, Ghanshyam G. Tejani4,5,*, Doaa Sami Khafaga6, El-Sayed M. El-kenawy7,8

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.070310 - 09 December 2025

    Abstract Object detection, a major challenge in computer vision and pattern recognition, plays a significant part in many applications, crossing artificial intelligence, face recognition, and autonomous driving. It involves focusing on identifying the detection, localization, and categorization of targets in images. A particularly important emerging task is distinguishing real animals from toy replicas in real-time, mostly for smart camera systems in both urban and natural environments. However, that difficult task is affected by factors such as showing angle, occlusion, light intensity, variations, and texture differences. To tackle these challenges, this paper recommends Group Sparse YOLOv8 (You… More >

  • Open Access

    ARTICLE

    Advanced AI-Driven Cybersecurity Solutions: Intelligent Threat Detection, Explainability, and Adversarial Resilience

    Kirubavathi Ganapathiyappan1,*, Kiruba Marimuthu Eswaramoorthy1, Abi Thangamuthu Shanthamani1, Aksaya Venugopal1, Asita Pon Bhavya Iyyappan1, Thilaga Manickam1, Ateeq Ur Rehman2,*, Habib Hamam3,4,5,6

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.070067 - 09 December 2025

    Abstract The growing use of Portable Document Format (PDF) files across various sectors such as education, government, and business has inadvertently turned them into a major target for cyberattacks. Cybercriminals take advantage of the inherent flexibility and layered structure of PDFs to inject malicious content, often employing advanced obfuscation techniques to evade detection by traditional signature-based security systems. These conventional methods are no longer adequate, especially against sophisticated threats like zero-day exploits and polymorphic malware. In response to these challenges, this study introduces a machine learning-based detection framework specifically designed to combat such threats. Central to… More >

  • Open Access

    ARTICLE

    A Super-Resolution Generative Adversarial Network for Remote Sensing Images Based on Improved Residual Module and Attention Mechanism

    Yifan Zhang1, Yong Gan2,*, Mengke Tang1, Xinxin Gan3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068880 - 09 December 2025

    Abstract High-resolution remote sensing imagery is essential for critical applications such as precision agriculture, urban management planning, and military reconnaissance. Although significant progress has been made in single-image super-resolution (SISR) using generative adversarial networks (GANs), existing approaches still face challenges in recovering high-frequency details, effectively utilizing features, maintaining structural integrity, and ensuring training stability—particularly when dealing with the complex textures characteristic of remote sensing imagery. To address these limitations, this paper proposes the Improved Residual Module and Attention Mechanism Network (IRMANet), a novel architecture specifically designed for remote sensing image reconstruction. IRMANet builds upon the Super-Resolution… More >

  • Open Access

    ARTICLE

    HUANNet: A High-Resolution Unified Attention Network for Accurate Counting

    Haixia Wang, Huan Zhang, Xiuling Wang, Xule Xin, Zhiguo Zhang*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069340 - 10 November 2025

    Abstract Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision, with applications ranging from crowd counting to various other object counting tasks. To address this, we propose HUANNet (High-Resolution Unified Attention Network), a convolutional neural network designed to capture both local features and rich semantic information through a high-resolution representation learning framework, while optimizing computational distribution across parallel branches. HUANNet introduces three core modules: the High-Resolution Attention Module (HRAM), which enhances feature extraction by optimizing multi-resolution feature fusion; the Unified Multi-Scale Attention Module (UMAM), which integrates spatial, channel, and More >

  • Open Access

    ARTICLE

    Intrusion Detection and Security Attacks Mitigation in Smart Cities with Integration of Human-Computer Interaction

    Abeer Alnuaim*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-33, 2026, DOI:10.32604/cmc.2025.069110 - 10 November 2025

    Abstract The rapid digitalization of urban infrastructure has made smart cities increasingly vulnerable to sophisticated cyber threats. In the evolving landscape of cybersecurity, the efficacy of Intrusion Detection Systems (IDS) is increasingly measured by technical performance, operational usability, and adaptability. This study introduces and rigorously evaluates a Human-Computer Interaction (HCI)-Integrated IDS with the utilization of Convolutional Neural Network (CNN), CNN-Long Short Term Memory (LSTM), and Random Forest (RF) against both a Baseline Machine Learning (ML) and a Traditional IDS model, through an extensive experimental framework encompassing many performance metrics, including detection latency, accuracy, alert prioritization, classification… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images

    Ghadah Naif Alwakid*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068666 - 10 November 2025

    Abstract Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that significantly affects cognitive function, making early and accurate diagnosis essential. Traditional Deep Learning (DL)-based approaches often struggle with low-contrast MRI images, class imbalance, and suboptimal feature extraction. This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans. Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization (CLAHE) and Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN). A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient (MCC)-based evaluation method into the design.… More >

  • Open Access

    ARTICLE

    GLMCNet: A Global-Local Multiscale Context Network for High-Resolution Remote Sensing Image Semantic Segmentation

    Yanting Zhang1, Qiyue Liu1,2, Chuanzhao Tian1,2,*, Xuewen Li1, Na Yang1, Feng Zhang1, Hongyue Zhang3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068403 - 10 November 2025

    Abstract High-resolution remote sensing images (HRSIs) are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies. However, their significant scale changes and wealth of spatial details pose challenges for semantic segmentation. While convolutional neural networks (CNNs) excel at capturing local features, they are limited in modeling long-range dependencies. Conversely, transformers utilize multihead self-attention to integrate global context effectively, but this approach often incurs a high computational cost. This paper proposes a global-local multiscale context network (GLMCNet) to extract both global and local multiscale contextual information from HRSIs.… More >

Displaying 1-10 on page 1 of 713. Per Page