Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (55)
  • Open Access

    ARTICLE

    Emotion Recognition with Short-Period Physiological Signals Using Bimodal Sparse Autoencoders

    Yun-Kyu Lee1, Dong-Sung Pae2, Dae-Ki Hong3, Myo-Taeg Lim1, Tae-Koo Kang4,*

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 657-673, 2022, DOI:10.32604/iasc.2022.020849

    Abstract With the advancement of human-computer interaction and artificial intelligence, emotion recognition has received significant research attention. The most commonly used technique for emotion recognition is EEG, which is directly associated with the central nervous system and contains strong emotional features. However, there are some disadvantages to using EEG signals. They require high dimensionality, diverse and complex processing procedures which make real-time computation difficult. In addition, there are problems in data acquisition and interpretation due to body movement or reduced concentration of the experimenter. In this paper, we used photoplethysmography (PPG) and electromyography (EMG) to record signals. Firstly, we segmented the… More >

  • Open Access

    ARTICLE

    Benchmarking Performance of Document Level Classification and Topic Modeling

    Muhammad Shahid Bhatti1,*, Azmat Ullah1, Rohaya Latip2, Abid Sohail1, Anum Riaz1, Rohail Hassan3

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 125-141, 2022, DOI:10.32604/cmc.2022.020083

    Abstract Text classification of low resource language is always a trivial and challenging problem. This paper discusses the process of Urdu news classification and Urdu documents similarity. Urdu is one of the most famous spoken languages in Asia. The implementation of computational methodologies for text classification has increased over time. However, Urdu language has not much experimented with research, it does not have readily available datasets, which turn out to be the primary reason behind limited research and applying the latest methodologies to the Urdu. To overcome these obstacles, a medium-sized dataset having six categories is collected from authentic Pakistani news… More >

  • Open Access

    ARTICLE

    Deep Learning Based Stacked Sparse Autoencoder for PAPR Reduction in OFDM Systems

    A. Jayamathi1, T. Jayasankar2,*

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 311-324, 2022, DOI:10.32604/iasc.2022.019473

    Abstract Orthogonal frequency division multiplexing is one of the efficient and flexible modulation techniques, and which is considered as the central part of many wired and wireless standards. Orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-output (MIMO) achieves maximum spectral efficiency and data rates for wireless mobile communication systems. Though it offers better quality of services, high peak-to-average power ratio (PAPR) is the major issue that needs to be resolved in the MIMO-OFDM system. Earlier studies have addressed the high PAPR of OFDM system using clipping, coding, selected mapping, tone injection, peak windowing, etc. Recently, deep learning (DL) models have exhibited… More >

  • Open Access

    ARTICLE

    Data-Driven Determinant-Based Greedy Under/Oversampling Vector Sensor Placement

    Yuji Saito*, Keigo Yamada, Naoki Kanda, Kumi Nakai, Takayuki Nagata, Taku Nonomura, Keisuke Asai

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 1-30, 2021, DOI:10.32604/cmes.2021.016603

    Abstract A vector-measurement-sensor-selection problem in the undersampled and oversampled cases is considered by extending the previous novel approaches: a greedy method based on D-optimality and a noise-robust greedy method in this paper. Extensions of the vector-measurement-sensor selection of the greedy algorithms are proposed and applied to randomly generated systems and practical datasets of flowfields around the airfoil and global climates to reconstruct the full state given by the vector-sensor measurement. More >

  • Open Access

    ARTICLE

    Fruit Ripeness Prediction Based on DNN Feature Induction from Sparse Dataset

    Wan Hyun Cho1, Sang Kyoon Kim2, Myung Hwan Na1, In Seop Na3,*

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 4003-4024, 2021, DOI:10.32604/cmc.2021.018758

    Abstract Fruit processing devices, that automatically detect the freshness and ripening stages of fruits are very important in precision agriculture. Recently, based on deep learning, many attempts have been made in computer image processing, to monitor the ripening stage of fruits. However, it is time-consuming to acquire images of the various ripening stages to be used for training, and it is difficult to measure the ripening stages of fruits accurately with a small number of images. In this paper, we propose a prediction system that can automatically determine the ripening stage of fruit by a combination of deep neural networks (DNNs)… More >

  • Open Access

    ARTICLE

    Pseudo Zernike Moment and Deep Stacked Sparse Autoencoder for COVID-19 Diagnosis

    Yu-Dong Zhang1, Muhammad Attique Khan2, Ziquan Zhu3, Shui-Hua Wang4,*

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3145-3162, 2021, DOI:10.32604/cmc.2021.018040

    Abstract (Aim) COVID-19 is an ongoing infectious disease. It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021. Traditional computer vision methods have achieved promising results on the automatic smart diagnosis. (Method) This study aims to propose a novel deep learning method that can obtain better performance. We use the pseudo-Zernike moment (PZM), derived from Zernike moment, as the extracted features. Two settings are introducing: (i) image plane over unit circle; and (ii) image plane inside the unit circle. Afterward, we use a deep-stacked sparse autoencoder (DSSAE) as the classifier. Besides, multiple-way data augmentation is chosen… More >

  • Open Access

    ARTICLE

    Robust Topology Optimization of Periodic Multi-Material Functionally Graded Structures under Loading Uncertainties

    Xinqing Li1, Qinghai Zhao1,*, Hongxin Zhang1, Tiezhu Zhang2, Jianliang Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 683-704, 2021, DOI:10.32604/cmes.2021.015685

    Abstract This paper presents a robust topology optimization design approach for multi-material functional graded structures under periodic constraint with load uncertainties. To characterize the random-field uncertainties with a reduced set of random variables, the Karhunen-Loève (K-L) expansion is adopted. The sparse grid numerical integration method is employed to transform the robust topology optimization into a weighted summation of series of deterministic topology optimization. Under dividing the design domain, the volume fraction of each preset gradient layer is extracted. Based on the ordered solid isotropic microstructure with penalization (Ordered-SIMP), a functionally graded multi-material interpolation model is formulated by individually optimizing each preset… More >

  • Open Access

    ARTICLE

    Low Complexity Decoding Algorithm for Uplink SCMA Based on Aerial Spherical Decoding

    Xiaohong Ji1, Junjun Du1, Guoqing Jia1,*, Weidong Fang2,3

    Intelligent Automation & Soft Computing, Vol.27, No.3, pp. 737-746, 2021, DOI:10.32604/iasc.2021.013009

    Abstract As a new non-orthogonal multiple access technology for 5G massive machine type communication scenario, the sparse code multiple access (SCMA) has greatly improved the spectrum efficiency due to the high connection density. SCMA combines QAM (Quadrature Amplitude Modulation) modulation and sparse spreading into a codebook set to obtain forming gain. The user binary bit data is directly mapped into multi-dimensional codewords in the transmitter. The receiver uses the message passing algorithm (MPA) for multi-user detection to achieve efficient decoding. However, MPA is a good solution for SCMA, though its high complexity limits the application in practical systems. In order to… More >

  • Open Access

    ARTICLE

    Intelligent Fusion of Infrared and Visible Image Data Based on Convolutional Sparse Representation and Improved Pulse-Coupled Neural Network

    Jingming Xia1, Yi Lu1, Ling Tan2,*, Ping Jiang3

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 613-624, 2021, DOI:10.32604/cmc.2021.013457

    Abstract Multi-source information can be obtained through the fusion of infrared images and visible light images, which have the characteristics of complementary information. However, the existing acquisition methods of fusion images have disadvantages such as blurred edges, low contrast, and loss of details. Based on convolution sparse representation and improved pulse-coupled neural network this paper proposes an image fusion algorithm that decompose the source images into high-frequency and low-frequency subbands by non-subsampled Shearlet Transform (NSST). Furthermore, the low-frequency subbands were fused by convolutional sparse representation (CSR), and the high-frequency subbands were fused by an improved pulse coupled neural network (IPCNN) algorithm,… More >

  • Open Access

    ARTICLE

    A Dynamically Reconfigurable Accelerator Design Using a Sparse-Winograd Decomposition Algorithm for CNNs

    Yunping Zhao, Jianzhuang Lu*, Xiaowen Chen

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 517-535, 2021, DOI:10.32604/cmc.2020.012380

    Abstract Convolutional Neural Networks (CNNs) are widely used in many fields. Due to their high throughput and high level of computing characteristics, however, an increasing number of researchers are focusing on how to improve the computational efficiency, hardware utilization, or flexibility of CNN hardware accelerators. Accordingly, this paper proposes a dynamically reconfigurable accelerator architecture that implements a Sparse-Winograd F(2 2.3 3)-based high-parallelism hardware architecture. This approach not only eliminates the pre-calculation complexity associated with the Winograd algorithm, thereby reducing the difficulty of hardware implementation, but also greatly improves the flexibility of the hardware; as a result, the accelerator can realize the… More >

Displaying 21-30 on page 3 of 55. Per Page