Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (139)
  • Open Access

    ARTICLE

    The Characteristics of Glued Tensile Shear Strength Constituted of Wood Cut by CO2 Laser

    Fatemeh Rezaei1,2,*, Milan Gaff1,3,4,*, Róbert Nemeth5, Jerzy Smardzewski6, Peter Niemz7, Haitao Li8,9, Anil Kumar Sethy1,10, Luigi Todaro11, Gourav Kamboj1, Sumanta Das1, Roberto Corleto1, Gianluca Ditommaso1, Miklós Bak5

    Journal of Renewable Materials, Vol.11, No.8, pp. 3277-3296, 2023, DOI:10.32604/jrm.2023.028352

    Abstract The performance of engineered wood products is highly associated with proper bonding and an efficient cutting method. This paper investigates the influence of CO2 laser cutting on the wetting properties, the modified chemical component of the laser-cut surface, and the strength and adhesive penetration near the bondline. Beechwood is cut by the laser with varying processing parameters, cutting speeds, gas pressures, and focal point positions. The laser-cut samples were divided into two groups, sanded and non-sanded samples. Polyvinyl acetate adhesive (PVAc) was used to bond the groups of laser-cut samples. After assembly with cold pressing, the tensile shear test was… More >

  • Open Access

    REVIEW

    Research Progress of Aerodynamic Multi-Objective Optimization on High-Speed Train Nose Shape

    Zhiyuan Dai, Tian Li*, Weihua Zhang, Jiye Zhang

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1461-1489, 2023, DOI:10.32604/cmes.2023.028677

    Abstract The aerodynamic optimization design of high-speed trains (HSTs) is crucial for energy conservation, environmental preservation, operational safety, and speeding up. This study aims to review the current state and progress of the aerodynamic multi-objective optimization of HSTs. First, the study explores the impact of train nose shape parameters on aerodynamic performance. The parameterization methods involved in the aerodynamic multiobjective optimization of HSTs are summarized and classified as shape-based and disturbance-based parameterization methods. Meanwhile, the advantages and limitations of each parameterization method, as well as the applicable scope, are briefly discussed. In addition, the NSGA-II algorithm, particle swarm optimization algorithm, standard… More >

  • Open Access

    PROCEEDINGS

    Impact of the Railway Vehicle Characteristics in Its Runnability in the Presence of Strong Winds

    Pedro Montenegro1,*, Raphael Heleno2, Hermes Carvalho2, Diogo Ribeiro3, Rui Calçada1, Chris Baker4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-2, 2022, DOI:10.32604/icces.2022.08678

    Abstract This work consists of evaluating the impact of the most relevant characteristics of railway vehicles, namely geometric, mechanical and aerodynamic properties, in their runnability in the presence of strong winds, more precisely in the risk of derailment. Such objective is achieved by performing several dynamic with a non-linear vehicle-structure interaction model developed by the authors [1,2] and used in other works in this field [3,4], which allows the evaluation of the wheel-rail contact forces and, consequently, the unloading index, as suggested by the European Norm EN 14067-6 [5]. The calculations are carried out for several scenarios characterized by different train… More >

  • Open Access

    ARTICLE

    Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed

    Neelam Mughees1,2, Mujtaba Hussain Jaffery1, Abdullah Mughees3, Anam Mughees4, Krzysztof Ejsmont5,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6375-6393, 2023, DOI:10.32604/cmc.2023.038564

    Abstract Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050. However, they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions. In microgrids, smart energy management systems, such as integrated demand response programs, are permanently established on a step-ahead basis, which means that accurate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids. With this in mind, a novel “bidirectional long short-term memory network” (Bi-LSTM)-based, deep stacked, sequence-to-sequence autoencoder (S2SAE) forecasting model… More >

  • Open Access

    ARTICLE

    A Whale Optimization Algorithm with Distributed Collaboration and Reverse Learning Ability

    Zhedong Xu*, Yongbo Su, Fang Yang, Ming Zhang

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5965-5986, 2023, DOI:10.32604/cmc.2023.037611

    Abstract Due to the development of digital transformation, intelligent algorithms are getting more and more attention. The whale optimization algorithm (WOA) is one of swarm intelligence optimization algorithms and is widely used to solve practical engineering optimization problems. However, with the increased dimensions, higher requirements are put forward for algorithm performance. The double population whale optimization algorithm with distributed collaboration and reverse learning ability (DCRWOA) is proposed to solve the slow convergence speed and unstable search accuracy of the WOA algorithm in optimization problems. In the DCRWOA algorithm, the novel double population search strategy is constructed. Meanwhile, the reverse learning strategy… More >

  • Open Access

    ARTICLE

    DIAGNOSIS OF CENTRIFUGAL PUMP SPEED FLUCTUATION BY USING VORTEX DYNAMICS

    L. Chenga , Y. L. Zhanga,† , J. F. Lib

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-7, 2022, DOI:10.5098/hmt.19.32

    Abstract The internal characteristics during rotational speed fluctuation have an important influence on centrifugal pump to avoid or utilize its transient performance. In this paper, a circulation piping system that includes a low-specific-speed centrifugal pump is established to study the energy distribution characteristics in a centrifugal pump during speed fluctuation. The unsteady flow in the entire system is numerically calculated with a user-defined function, the sliding grid method, and the RNG k-ε turbulence model. Then, the energy distribution of the transient flow field in the centrifugal pump model during speed fluctuation is diagnosed with vortex dynamics by using flow section and… More >

  • Open Access

    ARTICLE

    Wind Speed Prediction Using Chicken Swarm Optimization with Deep Learning Model

    R. Surendran1,*, Youseef Alotaibi2, Ahmad F. Subahi3

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3371-3386, 2023, DOI:10.32604/csse.2023.034465

    Abstract High precision and reliable wind speed forecasting have become a challenge for meteorologists. Convective events, namely, strong winds, thunderstorms, and tornadoes, along with large hail, are natural calamities that disturb daily life. For accurate prediction of wind speed and overcoming its uncertainty of change, several prediction approaches have been presented over the last few decades. As wind speed series have higher volatility and nonlinearity, it is urgent to present cutting-edge artificial intelligence (AI) technology. In this aspect, this paper presents an intelligent wind speed prediction using chicken swarm optimization with the hybrid deep learning (IWSP-CSODL) method. The presented IWSP-CSODL model… More >

  • Open Access

    ARTICLE

    A Novel Method to Enhance the Inversion Speed and Precision of the NMR T2 Spectrum by the TSVD Based Linearized Bregman Iteration

    Yiguo Chen1,2,3,*, Congjun Feng1,2, Yonghong He3, Zhijun Chen3, Xiaowei Fan3, Chao Wang3, Xinmin Ge4

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2451-2463, 2023, DOI:10.32604/cmes.2023.021145

    Abstract The low-field nuclear magnetic resonance (NMR) technique has been used to probe the pore size distribution and the fluid composition in geophysical prospecting and related fields. However, the speed and accuracy of the existing numerical inversion methods are still challenging due to the ill-posed nature of the first kind Fredholm integral equation and the contamination of the noises. This paper proposes a novel inversion algorithm to accelerate the convergence and enhance the precision using empirical truncated singular value decompositions (TSVD) and the linearized Bregman iteration. The L1 penalty term is applied to construct the objective function, and then the linearized… More > Graphic Abstract

    A Novel Method to Enhance the Inversion Speed and Precision of the NMR T<sub>2</sub> Spectrum by the TSVD Based Linearized Bregman Iteration

  • Open Access

    ARTICLE

    Analysis of a Water-Cooled Unit under Different Loads

    Daoming Shen1,*, Jinhong Xia1, Chao Gui1, Songtao Xue2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1863-1873, 2023, DOI:10.32604/fdmp.2023.024925

    Abstract In order to ensure the safe operation of the compressors used in water chillers, in the present study some interlock protections have been added to the related design. These include a low pressure protection, a high pressure protection, an exhaust temperature protection and a differential pressure protection. Some tests have been conducted by tuning the saturation suction and exhaust temperatures of the compressor through adjustment of the cold source outlet temperature and the ambient temperature. The results show that the ambient temperature increases with decreasing device load and increasing fan speed under the same saturated suction temperature; the device refrigerating… More > Graphic Abstract

    Analysis of a Water-Cooled Unit under Different Loads

  • Open Access

    ARTICLE

    Improving Performance of Recurrent Neural Networks Using Simulated Annealing for Vertical Wind Speed Estimation

    Shafiqur Rehman1,*, Hilal H. Nuha2, Ali Al Shaikhi3, Satria Akbar2, Mohamed Mohandes1,3

    Energy Engineering, Vol.120, No.4, pp. 775-789, 2023, DOI:10.32604/ee.2023.026185

    Abstract An accurate vertical wind speed (WS) data estimation is required to determine the potential for wind farm installation. In general, the vertical extrapolation of WS at different heights must consider different parameters from different locations, such as wind shear coefficient, roughness length, and atmospheric conditions. The novelty presented in this article is the introduction of two steps optimization for the Recurrent Neural Networks (RNN) model to estimate WS at different heights using measurements from lower heights. The first optimization of the RNN is performed to minimize a differentiable cost function, namely, mean squared error (MSE), using the Broyden-Fletcher-Goldfarb-Shanno algorithm. Secondly,… More >

Displaying 21-30 on page 3 of 139. Per Page