Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (151)
  • Open Access

    ARTICLE

    Effect of Freeze-Thaw Cycles on Chloride Transportation in Concrete: Prediction Model and Experiment

    Yongdong Yan*, Youdong Si, Chunhua Lu, Keke Wu

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 225-238, 2023, DOI:10.32604/sdhm.2022.022629

    Abstract This research aims to investigate the effect of frost damage on chloride transportation mechanism in ordinary and fiber concrete with both theoretical and experimental methods. The proposed theoretical model takes into account the varying damage levels caused by concrete cover depth and freeze-thaw cycles, which are the two primary parameters affecting the expression of the chloride diffusion coefficient. In the experiment, three types of concrete were prepared: ordinary Portland concrete (OPC), polypropylene fiber concrete (PFC), and steel fiber concrete (SFC). These were then immersed in NaCl solution for 120 days after undergoing 10, 25, and 50 freeze-thaw cycles. The damage… More >

  • Open Access

    ARTICLE

    Efficient Use of Steel Slag in Alkali-Activated Blast Furnace Slag Based Geopolymer

    Yu Bai, Lei Wang, Ying Fang*

    Journal of Renewable Materials, Vol.11, No.7, pp. 3129-3141, 2023, DOI:10.32604/jrm.2023.026923

    Abstract Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern. Therefore, there is an urgent need to develop a low carbon building material. Geopolymers have become a hot topic due to their environmental sustainability and the feasibility of immobilizing industrial waste. In this paper, steel slag (SS) fines were investigated as auxiliary materials of blast furnace slag (BFS) based geopolymer. The hydration heat properties, flowability, compressive strength, sorptivity coefficient, X-ray diffraction (XRD), and scanning electron microscopy (SEM) of the geopolymer pastes were determined. The results showed that the incorporation of SS weakened the reactivity… More >

  • Open Access

    ARTICLE

    Modeling & Evaluating the Performance of Convolutional Neural Networks for Classifying Steel Surface Defects

    Nadeem Jabbar Chaudhry1,*, M. Bilal Khan2, M. Javaid Iqbal1, Siddiqui Muhammad Yasir3

    Journal on Artificial Intelligence, Vol.4, No.4, pp. 245-259, 2022, DOI:10.32604/jai.2022.038875

    Abstract Recently, outstanding identification rates in image classification tasks were achieved by convolutional neural networks (CNNs). to use such skills, selective CNNs trained on a dataset of well-known images of metal surface defects captured with an RGB camera. Defects must be detected early to take timely corrective action due to production concerns. For image classification up till now, a model-based method has been utilized, which indicated the predicted reflection characteristics of surface defects in comparison to flaw-free surfaces. The problem of detecting steel surface defects has grown in importance as a result of the vast range of steel applications in end-product… More >

  • Open Access

    ARTICLE

    Process Monitoring and Terminal Verification of Cable-Stayed Bridges with Corrugated Steel Webs under Contruction

    Kexin Zhang, Xinyuan Shen, Longsheng Bao, He Liu*

    Structural Durability & Health Monitoring, Vol.17, No.2, pp. 131-158, 2023, DOI:10.32604/sdhm.2023.023431

    Abstract In this paper, the construction process of a cable-stayed bridge with corrugated steel webs was monitored. Moreover, the end performance of the bridge was verified by load test. Owing to the consideration of the bridge structure safety, it is necessary to monitor the main girder deflection, stress, construction error and safety state during construction. Furthermore, to verify whether the bridge can meet the design requirements, the static and dynamic load tests are carried out after the completion of the bridge. The results of construction monitoring show that the stress state of the structure during construction is basically consistent with the… More >

  • Open Access

    ARTICLE

    Research on the Corrosion of J55 Steel Due to Oxygen-Reducing Air Flooding in Low-Permeability Reservoirs

    Liang Wang1, Baofeng Hou1, Yanming Fang3, Jintao Zhang2, Fajian Nie1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1925-1937, 2023, DOI:10.32604/fdmp.2023.025966

    Abstract Oxygen-reducing air flooding is a low-permeability reservoir recovery technology with safety and low-cost advantages. However, in the process of air injection and drive, carbon in the air is oxidized through the crude oil reservoir to generate CO2, and this can cause serious corrosion in the recovery well. In this study, experiments on the corrosion of J55 tubular steel in a fluid environment with coexisting O2 and CO2 in an autoclave are presented. In particular, a weight loss method and a 3D morphometer were used to determine the average and the local corrosion rate. The corrosion surface morphology and composition were… More >

  • Open Access

    ARTICLE

    Experimental Investigation on the Effect of Seal Presence on the Behavior of Double-Deck Floating Roofs in Cylindrical Steel Storage Tanks

    Alireza Doustvandi, Mehrzad Tahamouli Roudsari*, Behnoush Niazi

    Structural Durability & Health Monitoring, Vol.17, No.1, pp. 55-70, 2023, DOI:10.32604/sdhm.2022.017458

    Abstract Liquid storage, particularly oil and petrochemical products which are considered hazardous liquid, are an important part of the oil industry. Thin-walled vertical cylindrical steel storage tanks are widely used in recent years. Due to high sensitivity of these structures in an earthquake and other external excitations may lead to catastrophic consequences. For instance, huge economic losses, environmental damages, and casualities, many studies have been done about these structures. past studies showed that liquid storage tanks, equipped with a floating roof, are potentially vulnerable while subjected to seismic loads and earthquake has been considered as one of the most destructive natural… More >

  • Open Access

    ARTICLE

    Exploring the Mechanical Properties, Shrinkage and Compensation Mechanism of Cement Stabilized Macadam-Steel Slag from Multiple Perspectives

    Wei Zhang1, Mulian Zheng1,*, Yifeng Li2, Wuxi Zheng3

    Journal of Renewable Materials, Vol.11, No.5, pp. 2513-2529, 2023, DOI:10.32604/jrm.2023.025275

    Abstract Steel slag is characterized by high strength, good wear resistance and micro-expansion. This study aims at exploring the potential of steel slag in cement stabilized aggregates, mainly including mechanical properties, shrinkage and compensation mechanisms. For this purpose, the compressive strength and compressive resilient modulus of cement stabilized aggregates with different steel slag contents (CSMS) were initially investigated. Subsequently, the effects of steel slag and cement on dry shrinkage, temperature shrinkage, and total shrinkage were analyzed through a series of shrinkage test designs. Additionally, in combination with X-ray diffraction (XRD) and Scanning electron microscope (SEM), the characteristic peaks and microscopic images… More >

  • Open Access

    ARTICLE

    Numerical Study on the Combined Use of Corten Steel and Phase Change Materials in Container-Type Houses

    Feriel Mustapha1,2,*, Marwa El Yassi1,2, Ikram El Abbassi1,2, Abdelhak Kaci2, Elhadj Kadri2, A-Moumen Darcherif3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 953-958, 2023, DOI:10.32604/fdmp.2022.022028

    Abstract A study is presented on the feasibility of an approach based on the combination of Phase Change Materials (PCM) with metal walls in container-type houses. This line of research finds its motivations in recent trends in the energy and building sectors about energy consumption reduction. Another important objective concerns possible improvements in the comfort provided by such houses during the summer period. The results obtained through numerical solution of the governing equations accounting for heat transfer and latent heat effects associated with the PCM show that the indoor temperature can be reduced with a varying degree of success depending on… More >

  • Open Access

    ARTICLE

    Experimental Study of Moso Bamboo to-Steel Connections with Embedded Grouting Materials

    Shidong Nie1,2, Wei Fu1,2, Hui Wang1,2,*, Di Wu1,2,3, Min Liu1,2, Junlong Wang4

    Journal of Renewable Materials, Vol.11, No.3, pp. 1401-1423, 2023, DOI:10.32604/jrm.2022.023446

    Abstract Moso bamboos have attracted excessive attention as a renewable green building material to the concept of sustainable development. In this paper, the 20 bolted Moso bamboo connection specimens with embedded steel plates and grouting materials were designed according to connection configurations with different bolt diameters and end distance of bolt holes, and their bearing capacities and failure modes were analyzed by static tension tests. According to the test results of all connectors, the failure modes of the specimens are divided into four categories, and the effects of bolt diameter and bolt hole end distance on the connection bearing capacity and… More >

  • Open Access

    ARTICLE

    An Experimental Study of Composite Columns Filled with Eucalyptus nitens Timber under Axial Compression

    Yingyao Cheng1,2, Xudong Chen3, Huaming An1,*, Huimin Wang2,4, Kai Tao2,5

    Journal of Renewable Materials, Vol.11, No.2, pp. 825-836, 2023, DOI:10.32604/jrm.2022.022599

    Abstract Eucalyptus nitens (E. nitens) has been much used for producing paper but also shows promise for structural applications. In this study, static compressive tests were undertaken to examine its suitability to be used in an innovative composite column. The composite column was comprised of a rectangular steel tube with E. nitens timber infill. The nonlinear compressive behaviour of the composite column filled with E. nitens wood for both dry and wet conditions was examined. The same tests on rectangular steel tubes and bare dry and wet E. nitens samples were also undertaken as a comparison. For samples with different conditions,… More > Graphic Abstract

    An Experimental Study of Composite Columns Filled with <i>Eucalyptus nitens</i> Timber under Axial Compression

Displaying 21-30 on page 3 of 151. Per Page