Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,164)
  • Open Access

    ARTICLE

    A Dynamic Social Network Graph Anonymity Scheme with Community Structure Protection

    Yuanjing Hao, Xuemin Wang, Liang Chang*, Long Li, Mingmeng Zhang

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3131-3159, 2025, DOI:10.32604/cmc.2024.059201 - 17 February 2025

    Abstract Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific… More >

  • Open Access

    ARTICLE

    Telecontext-Enhanced Recursive Interactive Attention Fusion Method for Line-Level Defect Prediction

    Haitao He1, Bingjian Yan1, Ke Xu1,*, Lu Yu1,2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2077-2108, 2025, DOI:10.32604/cmc.2024.058779 - 17 February 2025

    Abstract Software defect prediction aims to use measurement data of code and historical defects to predict potential problems, optimize testing resources and defect management. However, current methods face challenges: (1) Coarse-grained file level detection cannot accurately locate specific defects. (2) Fine-grained line-level defect prediction methods rely solely on local information of a single line of code, failing to deeply analyze the semantic context of the code line and ignoring the heuristic impact of line-level context on the code line, making it difficult to capture the interaction between global and local information. Therefore, this paper proposes a… More >

  • Open Access

    ARTICLE

    Study on the Fluid-Solid Coupling Seepage of the Deep Tight Reservoir Based on 3D Digital Core Modeling

    Haijun Yang1,2,*, Zhenzhong Cai1,2, Hui Zhang1,2, Chong Sun1,2, Jing Li3,*, Xiaoyu Meng3, Chen Liu4, Chengqiang Yang3

    Energy Engineering, Vol.122, No.2, pp. 537-560, 2025, DOI:10.32604/ee.2024.058747 - 31 January 2025

    Abstract Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures, thus the seepage characteristics are significant for enhancing oil production. This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone. A digital core of tight sandstone was built using Computed Tomography (CT) scanning, which was divided into matrix and pore phases by a pore equivalent diameter threshold. A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale. The results showed that increasing the confining pressure decreased porosity, permeability, and flow More >

  • Open Access

    REVIEW

    Topology, Size, and Shape Optimization in Civil Engineering Structures: A Review

    Ahmed Manguri1,2,3,*, Hogr Hassan3, Najmadeen Saeed3,4, Robert Jankowski1

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 933-971, 2025, DOI:10.32604/cmes.2025.059249 - 27 January 2025

    Abstract The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications. Structural optimization approaches seek to determine the optimal design, by considering material performance, cost, and structural safety. The design approaches aim to reduce the built environment’s energy use and carbon emissions. This comprehensive review examines optimization techniques, including size, shape, topology, and multi-objective approaches, by integrating these methodologies. The trends and advancements that contribute to developing more efficient, cost-effective, and reliable structural designs were identified. The review also discusses emerging technologies, such as machine learning applications with More >

  • Open Access

    ARTICLE

    Magneto-Electro-Elastic Analysis of Doubly-Curved Shells: Higher-Order Equivalent Layer-Wise Formulation

    Francesco Tornabene*, Matteo Viscoti, Rossana Dimitri

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1767-1838, 2025, DOI:10.32604/cmes.2024.058842 - 27 January 2025

    Abstract Recent engineering applications increasingly adopt smart materials, whose mechanical responses are sensitive to magnetic and electric fields. In this context, new and computationally efficient modeling strategies are essential to predict the multiphysic behavior of advanced structures accurately. Therefore, the manuscript presents a higher-order formulation for the static analysis of laminated anisotropic magneto-electro-elastic doubly-curved shell structures. The fundamental relations account for the full coupling between the electric field, magnetic field, and mechanical elasticity. The configuration variables are expanded along the thickness direction using a generalized formulation based on the Equivalent Layer-Wise approach. Higher-order polynomials are selected,… More >

  • Open Access

    ARTICLE

    Hygro-Thermo-Mechanical Equivalent Layer-Wise Theory of Laminated Shell Structures

    Francesco Tornabene*, Matteo Viscoti, Rossana Dimitri

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1697-1765, 2025, DOI:10.32604/cmes.2025.058841 - 27 January 2025

    Abstract This study presents a generalized two-dimensional model for evaluating the stationary hygro-thermo-mechanical response of laminated shell structures made of advanced materials. It introduces a generalized kinematic model, enabling the assessment of arbitrary values of temperature variation and mass concentration variation for the unvaried configuration at the top and bottom surfaces. This is achieved through the Equivalent Layer-Wise description of the unknown field variable using higher-order polynomials and zigzag functions. In addition, an elastic foundation is modeled utilizing the Winkler-Pasternak theory. The fundamental equations, derived from the total free energy of the system, are solved analytically… More > Graphic Abstract

    Hygro-Thermo-Mechanical Equivalent Layer-Wise Theory of Laminated Shell Structures

  • Open Access

    REVIEW

    Significant Advancements in UAV Technology for Reliable Oil and Gas Pipeline Monitoring

    Ibrahim Akinjobi Aromoye1, Hai Hiung Lo1, Patrick Sebastian1, Ghulam E Mustafa Abro2,*, Shehu Lukman Ayinla1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1155-1197, 2025, DOI:10.32604/cmes.2025.058598 - 27 January 2025

    Abstract Unmanned aerial vehicles (UAVs) technology is rapidly advancing, offering innovative solutions for various industries, including the critical task of oil and gas pipeline surveillance. However, the limited flight time of conventional UAVs presents a significant challenge to comprehensive and continuous monitoring, which is crucial for maintaining the integrity of pipeline infrastructure. This review paper evaluates methods for extending UAV flight endurance, focusing on their potential application in pipeline inspection. Through an extensive literature review, this study identifies the latest advancements in UAV technology, evaluates their effectiveness, and highlights the existing gaps in achieving prolonged flight… More > Graphic Abstract

    Significant Advancements in UAV Technology for Reliable Oil and Gas Pipeline Monitoring

  • Open Access

    ARTICLE

    Optimizing BERT for Bengali Emotion Classification: Evaluating Knowledge Distillation, Pruning, and Quantization

    Md Hasibur Rahman, Mohammed Arif Uddin, Zinnat Fowzia Ria, Rashedur M. Rahman*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1637-1666, 2025, DOI:10.32604/cmes.2024.058329 - 27 January 2025

    Abstract The rapid growth of digital data necessitates advanced natural language processing (NLP) models like BERT (Bidirectional Encoder Representations from Transformers), known for its superior performance in text classification. However, BERT’s size and computational demands limit its practicality, especially in resource-constrained settings. This research compresses the BERT base model for Bengali emotion classification through knowledge distillation (KD), pruning, and quantization techniques. Despite Bengali being the sixth most spoken language globally, NLP research in this area is limited. Our approach addresses this gap by creating an efficient BERT-based model for Bengali text. We have explored 20 combinations… More > Graphic Abstract

    Optimizing BERT for Bengali Emotion Classification: Evaluating Knowledge Distillation, Pruning, and Quantization

  • Open Access

    ARTICLE

    Biomechanical Study of Different Scaffold Designs for Reconstructing a Traumatic Distal Femur Defect Using Patient-Specific Computational Modeling

    Hsien-Tsung Lu1,2, Ching-Chi Hsu3,*, Qi-Quan Jian3, Wei-Ting Chen4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1883-1898, 2025, DOI:10.32604/cmes.2025.057675 - 27 January 2025

    Abstract Reconstruction of a traumatic distal femur defect remains a therapeutic challenge. Bone defect implants have been proposed to substitute the bone defect, and their biomechanical performances can be analyzed via a numerical approach. However, the material assumptions for past computational human femur simulations were mainly homogeneous. Thus, this study aimed to design and analyze scaffolds for reconstructing the distal femur defect using a patient-specific finite element modeling technique. A three-dimensional finite element model of the human femur with accurate geometry and material distribution was developed using the finite element method and material mapping technique. An… More > Graphic Abstract

    Biomechanical Study of Different Scaffold Designs for Reconstructing a Traumatic Distal Femur Defect Using Patient-Specific Computational Modeling

  • Open Access

    REVIEW

    Control Structures and Algorithms for Force Feedback Bilateral Teleoperation Systems: A Comprehensive Review

    Jiawei Tian1, Yu Zhou1, Lirong Yin2,*, Salman A. AlQahtani3, Minyi Tang4, Siyu Lu4, Ruiyang Wang4, Wenfeng Zheng3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 973-1019, 2025, DOI:10.32604/cmes.2024.057261 - 27 January 2025

    Abstract Force feedback bilateral teleoperation represents a pivotal advancement in control technology, finding widespread application in hazardous material transportation, perilous environments, space and deep-sea exploration, and healthcare domains. This paper traces the evolutionary trajectory of force feedback bilateral teleoperation from its conceptual inception to its current complexity. It elucidates the fundamental principles underpinning interaction forces and tactile exchanges, with a specific emphasis on the crucial role of tactile devices. In this review, a quantitative analysis of force feedback bilateral teleoperation development trends from 2011 to 2024 has been conducted, utilizing published journal article data as the… More >

Displaying 1-10 on page 1 of 1164. Per Page