Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,365)
  • Open Access

    PROCEEDINGS

    Ultrafast Spin Dynamics in Magnetic-Atom-Doped Triangulene Nanoflakes

    Shuai Xu1, Congfei Zang1, Yiming Zhang2, Chun Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-2, 2025, DOI:10.32604/icces.2025.011525

    Abstract The development of novel spintronic devices based on spin manipulation in magnetic nanostructures is crucial for achieving higher speed and miniaturization in future computing technologies. As a unique type of graphene quantum dot, triangulene nanoflakes (TNFs) exhibit nontrivial magnetic properties and excellent extensibility, making them highly promising for the design and application of spin logic units. In this study, we employ first-principles calculations to investigate experimentally synthesizable TNFs, in which transition metal (TM) atoms —namely Fe, Co, Ni, and Cu— are individually introduced at π-conjugated doping sites. The effects of different dopants and doping positions… More >

  • Open Access

    PROCEEDINGS

    Microstructure Mechanism of Stray Grain Formation During Ni-Based Single-Crystal Superalloys Prepared by Laser-Directed Energy Deposition

    Yan Zeng1, Boyuan Guan1, Zhenan Zhao2, Weizhu Yang1, Shouyi Sun1, Lei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010596

    Abstract Ni-based single-crystal superalloys (SX) turbine blades of aeroengines are inevitably damaged during using. Therefore, it is of great significance for commercial aeroengines with high economic requirements to repair SX turbine blades reasonably and continue to realize their value by Laser-Directed energy deposition (L-DED). The repairing of SX must maintain the epitaxial growth of single-crystal, so the microstructure adjustment and the inhibition of stray grains are important for the preparation of L-DED SX.
    In this work, the single channel monolayer and single channel five-layers SX have been prepared by L-DED. Based on the columnar transition to… More >

  • Open Access

    ARTICLE

    Theoretical Simulation of the Physical Properties of Solar Energy Material α-Cu2Se

    S. H. Fan1,*, Y. S. Song1, H. J. Hou1, H. L. Guo2, S. R. Zhang3

    Chalcogenide Letters, Vol.22, No.12, pp. 987-997, 2025, DOI:10.15251/CL.2025.2212.987 - 01 December 2025

    Abstract Using first-principles calculations, the physical behavior of α-Cu2Se are thoroughly examined. The computed structural parameters align closely with experimental data. Through computational analysis, the electronic properties for α-Cu2Se are determined. Additionally, mechanical characteristics-including bulk modulus B, shear modulus G, Young’s modulus E, and B/G are evaluated under varying pressure conditions. Furthermore, the optical properties are investigated. The study reveals that α-Cu2Se exhibits a direct bandgap of 0.782 eV, indicating its promising potential for optoelectronic applications. More >

  • Open Access

    ARTICLE

    Time-Resolved Experimental Analysis of Granite–Mortar Interface Permeability under High-Temperature Conditions

    Wei Chen*, Yuanteng Zhao, Yue Liang

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3033-3053, 2025, DOI:10.32604/fdmp.2025.073778 - 31 December 2025

    Abstract In deep underground engineering, geological disposal of nuclear waste, and geothermal development, the granite–mortar interface represents a critical weak zone that strongly influences sealing performance under high-temperature conditions. While previous studies have primarily focused on single materials, the dynamic evolution of interface permeability under thermal loading remains insufficiently understood. In this study, time-resolved gas permeability measurements under thermal cycling (20°C → 150°C → 20°C) were conducted, complemented by multi-scale microstructural characterization, to investigate the nonlinear evolution of permeability. Experimental results indicate that interface permeability at room temperature is approximately one order of magnitude higher than… More >

  • Open Access

    ARTICLE

    Vortex-Induced Vibration Prediction in Floating Structures via Unstructured CFD and Attention-Based Convolutional Modeling

    Yan Li1,2,*, Yibin Wu1,2, Bo Zhang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 2905-2925, 2025, DOI:10.32604/fdmp.2025.072979 - 31 December 2025

    Abstract Traditional Computational Fluid Dynamics (CFD) simulations are computationally expensive when applied to complex fluid–structure interaction problems and often struggle to capture the essential flow features governing vortex-induced vibrations (VIV) of floating structures. To overcome these limitations, this study develops a hybrid framework that integrates high-fidelity CFD modeling with deep learning techniques to enhance the accuracy and efficiency of VIV response prediction. First, an unstructured finite-volume fluid–structure coupling model is established to generate high-resolution flow field data and extract multi-component time-series feature tensors. These tensors serve as inputs to a Squeeze-and-Excitation Convolutional Neural Network (SE-CNN), which… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Load Generation in U-Shaped Aqueducts under Lateral Excitation: Part II—Non-Resonant Sloshing

    Yang Dou1, Hao Qin1, Yuzhi Zhang1,2, Ning Wang1, Haiqing Liu3,4, Wanli Yang1,2,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3091-3122, 2025, DOI:10.32604/fdmp.2025.070082 - 31 December 2025

    Abstract In recent years, tuned liquid dampers (TLDs) have emerged as a focal point of research due to their remarkable potential for structural vibration mitigation. Yet, progress in this field remains constrained by an incomplete understanding of the fundamental mechanisms governing sloshing-induced loads in liquid-filled containers. Aqueducts present a distinctive case, as the capacity of their contained water to function effectively as a TLD remains uncertain. To address this gap, the present study investigates the generation mechanisms of sloshing loads under non-resonant cases through a two-dimensional (2D) computational fluid dynamics (CFD) model developed in ANSYS Fluent.… More >

  • Open Access

    ARTICLE

    Preliminary Study on Flower Bud Differentiation and Dynamic Changes in Endogenous Hormones in ‘Hongyang’ Kiwifruit

    Xiaoqin Zheng1, Yuqing Wan1, Qian Zhang2, Liqin He2, Shihao Tang1, Qiguo Zhuang2, Lihua Wang2,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 3879-3892, 2025, DOI:10.32604/phyton.2025.073229 - 29 December 2025

    Abstract To investigate endogenous hormone changes in “Hongyang” kiwifruit from overwintering buds to floral morphogenesis (bell-shaped flowering stage), systematic observations were conducted during the undifferentiated stage, axillary bud differentiation stage, and floral morphogenesis stage from late November 2023 to early April 2024. Paraffin sectioning was employed to examine floral bud morphology, while LC-MS targeted metabolomics quantified changes in 15 endogenous hormones across 8 classes. Results indicated floral bud differentiation commenced from late January to early February and concluded by mid-April, spanning approximately 70 days. Approximately 33 days after axillary bud initiation marked the axillary bud primordium… More >

  • Open Access

    ARTICLE

    Performance Evaluation of Hierarchically Structured Superhydrophobic PVDF Membranes for Heavy Metals Removal via Membrane Distillation

    Pooja Yadav1,*, Ramin Farnood2, Vivek Kumar1,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1181-1197, 2025, DOI:10.32604/jpm.2025.072564 - 26 December 2025

    Abstract Heavy metal contamination in water sources is a widespread global concern, particularly in developing nations, with various treatment approaches under extensive scientific investigation. In the present study, we fabricated electrospun composite polyvinylidene fluoride (PVDF) nanofibrous membranes exhibiting hierarchical surface roughness and superhydrophobicity for the removal of heavy metal ions via vacuum membrane distillation (VMD) process. The membranes were prepared by incorporating optimized dosing of silica nanoparticles, followed by a two-step membrane modification approach. These membranes exhibited notable characteristics, including elevated water contact angle (152.8 ± 3.2°), increased liquid entry pressure (127 ± 6 kPa), and… More > Graphic Abstract

    Performance Evaluation of Hierarchically Structured Superhydrophobic PVDF Membranes for Heavy Metals Removal via Membrane Distillation

  • Open Access

    ARTICLE

    Behavior of Sandwich Glued Laminated Bamboo Structures with a Core Formed by Bioplastic Fiber Using 3D Printing Technology

    Nattawat Mahasuwanchai, Thippakorn Udtaranakron, Kasan Chanto, Tawich Pulngern*

    Journal of Renewable Materials, Vol.13, No.12, pp. 2453-2478, 2025, DOI:10.32604/jrm.2025.02025-0137 - 23 December 2025

    Abstract This research investigates the behavior of sandwich glued laminated bamboo (Glubam) structures with a core formed by biodegradable plastic fibers, specifically polylactic acid (PLA), fabricated using 3D printing technology. The influence of various fiber printing orientations (0° and 45/135°) on tensile and compressive properties was investigated. The experimental results indicated that polylactic acid with calcium carbonate (PLA+) printed unidirectionally and aligned with the loading direction (0°) exhibits superior tensile and compressive strengths compared to specimens printed bidirectionally at 45/135°. Furthermore, the effect of additives on bioplastics of carbon fiber (PLA-CF) and glass fiber (PLA-GF) additives… More > Graphic Abstract

    Behavior of Sandwich Glued Laminated Bamboo Structures with a Core Formed by Bioplastic Fiber Using 3D Printing Technology

  • Open Access

    ARTICLE

    Numerical Exploration on Load Transfer Characteristics and Optimization of Multi-Layer Composite Pavement Structures Based on Improved Transfer Matrix Method

    Guo-Zhi Li1, Hua-Ping Wang1,2,*, Si-Kai Wang1, Jing-Cheng Zhou1, Ping Xiang3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3165-3195, 2025, DOI:10.32604/cmes.2025.072750 - 23 December 2025

    Abstract Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity. A theoretical understanding of load transfer mechanisms in these multi-layer composites is essential, as it offers intuitive insights into parametric influences and facilitates enhanced structural performance. This paper employs an improved transfer matrix method to address the limitations of existing theoretical approaches for analyzing multi-layer composite structures. By establishing a two-dimensional composite pavement model, it investigates load transfer characteristics and validates the accuracy through finite element simulation. The proposed method offers a straightforward analytical approach… More >

Displaying 21-30 on page 3 of 1365. Per Page