Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (43)
  • Open Access

    ARTICLE

    Does seed aggrupation and substrate type affect the germination on three native species of Durango, Mexico?

    Sánchez J1, J Sáenz Mata1, J Flores3, E Jurado2, E Estrada Castillón2, O Aguirre2, G Muro1

    Phyton-International Journal of Experimental Botany, Vol.87, pp. 252-259, 2018, DOI:10.32604/phyton.2018.87.252

    Abstract The chemical and physical properties of the substrate produce positive or negative effects on the germination of seeds, and different pre-germination treatments are applied to obtain better results. However, the use of soil as a substrate where the species grows is usually not evaluated or used as a treatment. The objective of the present study was to evaluate the effect of the native substrate [two types of substrate where the woody species grow (clay and sand)] on the germination of Acacia farnesiana, Larrea tridentata and Prosopis laevigata. In addition, two groups were compared in seeds (grouped and not grouped) of… More >

  • Open Access

    ARTICLE

    Protocol for the reduction of costs in habanero chili (Capsicum chinense Jacq.) micropropagation

    Jimarez-Montiel MJ1, A Robledo-Paz1, VM Ordaz-Chaparro2, LI Trejo-Tellez2, JC Molina-Moreno1

    Phyton-International Journal of Experimental Botany, Vol.87, pp. 94-104, 2018, DOI:10.32604/phyton.2018.87.094

    Abstract An alternative method for improving the production of habanero chili is the tissue culture technique; however, the gelling agent, the high salt and sucrose concentrations used in the culture media raise production costs and limit the adaptation of the regenerated plants to greenhouse or field conditions. In this study, the effect of the substrates perlite-coconut fiber, coconut fiber-volcanic rock, vermiculite-perlite, and perlite-volcanic rock in conjunction with various culture media in in vitro plant regeneration from embryos was evaluated. The differentiation of adventitious shoots on substrates was scarcely observed or non-existent. Inducing the formation of shoots on agar and their development… More >

  • Open Access

    ARTICLE

    Contractile Torque as a Steering Mechanism for Orientation of Adherent Cells

    Dimitrije Stamenovic´ 1

    Molecular & Cellular Biomechanics, Vol.2, No.2, pp. 69-76, 2005, DOI:10.3970/mcb.2005.002.069

    Abstract It is well established that adherent cells change their orientation in response to non-uniform substrate stretching. Most observations indicate that cells orient away from the direction of the maximal substrate strain, whereas in some cases cells also align with the direction of the maximal strain. Previous studies suggest that orientation and steering of the cell may be closely tied to cytoskeletal contractile stress but they could not explain the mechanisms that direct cell reorientation. This led us to develop a simple, mechanistic theoretical model that could predict a direction of cell orientation in response to mechanical nonuniformities of the substrate.… More >

  • Open Access

    ABSTRACT

    Cell-substrate specific adhesion model regulated by substrate stiffness

    Jianyong Huang, Xiaoling Peng, Chunyang Xiong, Jing Fang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.4, pp. 119-120, 2011, DOI:10.3970/icces.2011.017.119

    Abstract Cell-substrate interfacial interplay plays a key role in many fundamental aspects of mammalian physiology. Recent progresses in related experiments concerning cell interactions with extracellular matrix have demonstrated that substrate rigidities can exert a remarkable influence on cell adhesion and spreading dynamics. For example, it has been reported that cell-substrate adhesion strength usually rises monotonically with Young's modulus of underlying elastic substrates and eventually achieves the strongest adhesion on rigid substrates such as glass, and that cell spreading area takes on a growing trend with the increase in substrate hardness and finally reaches a plateau when the stiffness exceeds the order… More >

  • Open Access

    ARTICLE

    Microfibrillated Cellulose from Sugarcane Bagasse as a Biorefinery Product for Ethanol Production

    Rafael Grande1*, Eliane Trovatti2, Maria Tereza B. Pimenta3, Antonio J. F. Carvalho1

    Journal of Renewable Materials, Vol.6, No.2, pp. 195-202, 2018, DOI:10.7569/JRM.2018.634109

    Abstract Research involving the preparation of microfibrillated cellulose (MFC) from sugarcane bagasse is a relevant topic to the production of new nanomaterials and more accessible cellulose substrates for the production of second generation ethanol. Regarding the transformation of cellulose into glucose, the precursor of second generation ethanol, this nanosized cellulosic substrate represents a more appropriate material for the chemical hydrolysis process. The high aspect ratio of MFC improves hydrolysis, requiring mild conditions and decreasing the generation of by-products. Here, MFC was prepared from sugarcane bagasse by ultrasound defibrillation. This material was oxidized with 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) to produce negatively charged high defibrillated… More >

  • Open Access

    ARTICLE

    Superhydrophobic and Oleophobic UV-Curable Surface Engineering of Cellulose-Based Substrates

    José M. R. C. A. Santos*, Ana R. Sampaio, Joana Branquinho

    Journal of Renewable Materials, Vol.4, No.1, pp. 31-40, 2016, DOI:10.7569/JRM.2015.634123

    Abstract Cellulose-based materials are one of the most widely used materials provided by nature to mankind. In particular, cotton fi bers have been used for millennia to produce clothing items. This wide usage stems from the inherent properties of cotton fabrics such as hydrophilicity and permeability to water vapor. However, increasingly sophisticated uses for cotton-based clothing (e.g., technical textiles) demand specifi c properties such as hydrophobicity and oleophobicity for repellent functions. The current surface treatments used to attain these functionalities are based on thermally initiated polymerization reactions, using water-based formulations. Thus, the current technologies are energy- and water-intensive. The advantages of… More >

  • Open Access

    ARTICLE

    Optimal Substrate Shape for Vesicle Adhesion on a Curved Substrate

    Wendong Shi∗,†, Xi-Qiao Feng*, Huajian Gao

    Molecular & Cellular Biomechanics, Vol.3, No.3, pp. 121-126, 2006, DOI:10.3970/mcb.2006.003.121

    Abstract When pulling a vesicle adhered on a substrate, both the force-displacement profile and the maximum force at pull-off are sensitively dependent upon the substrate shape. Here we consider the adhesion between a two-dimensional vesicle and a rigid substrate via long-range molecular interactions. For a given contact area, the theoretical pull-off force of the vesicle is obtained by multiplying the theoretical strength of adhesion and the contact area. It is shown that one may design an optimal substrate shape to achieve the theoretical pull-off force. More >

  • Open Access

    ARTICLE

    A Mathematical Model of Cell Reorientation in Response to Substrate Stretching

    Konstantinos A. Lazopoulos1, Dimitrije Stamenović2

    Molecular & Cellular Biomechanics, Vol.3, No.1, pp. 43-48, 2006, DOI:10.3970/mcb.2006.003.043

    Abstract It is well documented that in response to substrate stretching adhering cells alter their orientation. Generally, the cells reorient away from the direction of the maximum substrate strain, depending upon the magnitude of the substrate strain and the state of cell contractility. Theoretical models from the literature can describe only some aspects of this phenomenon. In the present study, we developed a more comprehensive mathematical model of cell reorientation than the current models. Using the framework of theory of non-linear elasticity, we found that the problem of cell reorientation was a stability problem, with the global (Maxwell's) criterion for stability.… More >

  • Open Access

    ARTICLE

    Substrate Modulation of Osteoblast Adhesion Strength, Focal Adhesion Kinase Activation, and Responsiveness to Mechanical Stimuli

    E. Takai1, R. Landesberg2, R.W. Katz2, C.T. Hung3, X.E Guo1,4

    Molecular & Cellular Biomechanics, Vol.3, No.1, pp. 1-12, 2006, DOI:10.3970/mcb.2006.003.001

    Abstract Osteoblast interactions with extracellular matrix (ECM) proteins are known to influence many cell functions, which may ultimately affect osseointegration of implants with the host bone tissue. Some adhesion-mediated events include activation of focal adhesion kinase, and subsequent changes in the cytoskeleton and cell morphology, which may lead to changes in adhesion strength and cell responsiveness to mechanical stimuli. In this study we examined focal adhesion kinase activation (FAK), F-actin cytoskeleton reorganization, adhesion strength, and osteoblast responsiveness to fluid shear when adhered to type I collagen (ColI), glass, poly-L-lysine (PLL), fibronectin (FN), vitronectin (VN), and serum (FBS). In general, surfaces that… More >

  • Open Access

    ARTICLE

    Simulation Analysis and Experiment Study of Nanocutting with AFM Probe on the Surface of Sapphire Substrate by Using Three Dimensional Quasi-steady Molecular Statics Nanocutting Model

    Zone-Ching Lin1, Ying-Chih Hsu1

    CMC-Computers, Materials & Continua, Vol.25, No.1, pp. 75-106, 2011, DOI:10.3970/cmc.2011.025.075

    Abstract The three-dimensional quasi-steady molecular statics nanocutting model is used by this paper to carry out simulation analysis of nanocutting of sapphire in order to explore the effects of conical tools with different tip radii of probe and straight-line cutting at different cutting depths, on cutting force. Meanwhile, this paper uses a cutting tool of atomic force microscopy (AFM) with a probe tip similar to a semisphere to conduct nanocutting experiment of sapphire substrate. Furthermore, from the experimental results of nanocutting sapphire substrate, this paper innovatively proposes the theoretical model and equation that the specific down force energy (SDFE) during nanocutting… More >

Displaying 21-30 on page 3 of 43. Per Page