Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    DenseSwinGNNNet: A Novel Deep Learning Framework for Accurate Turmeric Leaf Disease Classification

    Seerat Singla1, Gunjan Shandilya1, Ayman Altameem2, Ruby Pant3, Ajay Kumar4, Ateeq Ur Rehman5,*, Ahmad Almogren6,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 4021-4057, 2025, DOI:10.32604/phyton.2025.073354 - 29 December 2025

    Abstract Turmeric Leaf diseases pose a major threat to turmeric cultivation, causing significant yield loss and economic impact. Early and accurate identification of these diseases is essential for effective crop management and timely intervention. This study proposes DenseSwinGNNNet, a hybrid deep learning framework that integrates DenseNet-121, the Swin Transformer, and a Graph Neural Network (GNN) to enhance the classification of turmeric leaf conditions. DenseNet121 extracts discriminative low-level features, the Swin Transformer captures long-range contextual relationships through hierarchical self-attention, and the GNN models inter-feature dependencies to refine the final representation. A total of 4361 images from the… More >

  • Open Access

    ARTICLE

    STPEIC: A Swin Transformer-Based Framework for Interpretable Post-Earthquake Structural Classification

    Xinrui Ma, Shizhi Chen*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1745-1767, 2025, DOI:10.32604/sdhm.2025.071148 - 17 November 2025

    Abstract The rapid and accurate assessment of structural damage following an earthquake is crucial for effective emergency response and post-disaster recovery. Traditional manual inspection methods are often slow, labor-intensive, and prone to human error. To address these challenges, this study proposes STPEIC (Swin Transformer-based Framework for Interpretable Post-Earthquake Structural Classification), an automated deep learning framework designed for analyzing post-earthquake images. STPEIC performs two key tasks: structural components classification and damage level classification. By leveraging the hierarchical attention mechanisms of the Swin Transformer (Shifted Window Transformer), the model achieves 85.4% accuracy in structural component classification and 85.1% More >

  • Open Access

    ARTICLE

    Enhanced Fire Detection System for Blind and Visually Challenged People Using Artificial Intelligence with Deep Convolutional Neural Networks

    Fahd N. Al-Wesabi1,*, Hamad Almansour2, Huda G. Iskandar3,4, Ishfaq Yaseen5

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5765-5787, 2025, DOI:10.32604/cmc.2025.067571 - 23 October 2025

    Abstract Earlier notification and fire detection methods provide safety information and fire prevention to blind and visually impaired (BVI) individuals in a limited timeframe in the event of emergencies, particularly in enclosed areas. Fire detection becomes crucial as it directly impacts human safety and the environment. While modern technology requires precise techniques for early detection to prevent damage and loss, few research has focused on artificial intelligence (AI)-based early fire alert systems for BVI individuals in indoor settings. To prevent such fire incidents, it is crucial to identify fires accurately and promptly, and alert BVI personnel… More >

  • Open Access

    ARTICLE

    Hybrid HRNet-Swin Transformer: Multi-Scale Feature Fusion for Aerial Segmentation and Classification

    Asaad Algarni1, Aysha Naseer 2, Mohammed Alshehri3, Yahya AlQahtani4, Abdulmonem Alshahrani4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1981-1998, 2025, DOI:10.32604/cmc.2025.064268 - 29 August 2025

    Abstract Remote sensing plays a pivotal role in environmental monitoring, disaster relief, and urban planning, where accurate scene classification of aerial images is essential. However, conventional convolutional neural networks (CNNs) struggle with long-range dependencies and preserving high-resolution features, limiting their effectiveness in complex aerial image analysis. To address these challenges, we propose a Hybrid HRNet-Swin Transformer model that synergizes the strengths of HRNet-W48 for high-resolution segmentation and the Swin Transformer for global feature extraction. This hybrid architecture ensures robust multi-scale feature fusion, capturing fine-grained details and broader contextual relationships in aerial imagery. Our methodology begins with… More >

  • Open Access

    ARTICLE

    EEG Scalogram Analysis in Emotion Recognition: A Swin Transformer and TCN-Based Approach

    Selime Tuba Pesen, Mehmet Ali Altuncu*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5597-5611, 2025, DOI:10.32604/cmc.2025.066702 - 30 July 2025

    Abstract EEG signals are widely used in emotion recognition due to their ability to reflect involuntary physiological responses. However, the high dimensionality of EEG signals and their continuous variability in the time-frequency plane make their analysis challenging. Therefore, advanced deep learning methods are needed to extract meaningful features and improve classification performance. This study proposes a hybrid model that integrates the Swin Transformer and Temporal Convolutional Network (TCN) mechanisms for EEG-based emotion recognition. EEG signals are first converted into scalogram images using Continuous Wavelet Transform (CWT), and classification is performed on these images. Swin Transformer is… More >

  • Open Access

    ARTICLE

    NetST: Network Encrypted Traffic Classification Based on Swin Transformer

    Jianwei Zhang1,*, Hongying Zhao2, Yuan Feng3,*, Zengyu Cai2, Liang Zhu2

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5279-5298, 2025, DOI:10.32604/cmc.2025.066367 - 30 July 2025

    Abstract Network traffic classification is a crucial research area aimed at improving quality of service, simplifying network management, and enhancing network security. To address the growing complexity of cryptography, researchers have proposed various machine learning and deep learning approaches to tackle this challenge. However, existing mainstream methods face several general issues. On one hand, the widely used Transformer architecture exhibits high computational complexity, which negatively impacts its efficiency. On the other hand, traditional methods are often unreliable in traffic representation, frequently losing important byte information while retaining unnecessary biases. To address these problems, this paper introduces More >

  • Open Access

    ARTICLE

    Nighttime Intelligent UAV-Based Vehicle Detection and Classification Using YOLOv10 and Swin Transformer

    Abdulwahab Alazeb1, Muhammad Hanzla2, Naif Al Mudawi1,*, Mohammed Alshehri1, Haifa F. Alhasson3, Dina Abdulaziz AlHammadi4, Ahmad Jalal2,5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4677-4697, 2025, DOI:10.32604/cmc.2025.065899 - 30 July 2025

    Abstract Unmanned Aerial Vehicles (UAVs) have become indispensable for intelligent traffic monitoring, particularly in low-light conditions, where traditional surveillance systems struggle. This study presents a novel deep learning-based framework for nighttime aerial vehicle detection and classification that addresses critical challenges of poor illumination, noise, and occlusions. Our pipeline integrates MSRCR enhancement with OPTICS segmentation to overcome low-light challenges, while YOLOv10 enables accurate vehicle localization. The framework employs GLOH and Dense-SIFT for discriminative feature extraction, optimized using the Whale Optimization Algorithm to enhance classification performance. A Swin Transformer-based classifier provides the final categorization, leveraging hierarchical attention mechanisms More >

  • Open Access

    ARTICLE

    TransSSA: Invariant Cue Perceptual Feature Focused Learning for Dynamic Fruit Target Detection

    Jianyin Tang, Zhenglin Yu*, Changshun Shao

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2829-2850, 2025, DOI:10.32604/cmc.2025.063287 - 16 April 2025

    Abstract In the field of automated fruit harvesting, precise and efficient fruit target recognition and localization play a pivotal role in enhancing the efficiency of harvesting robots. However, this domain faces two core challenges: firstly, the dynamic nature of the automatic picking process requires fruit target detection algorithms to adapt to multi-view characteristics, ensuring effective recognition of the same fruit from different perspectives. Secondly, fruits in natural environments often suffer from interference factors such as overlapping, occlusion, and illumination fluctuations, which increase the difficulty of image capture and recognition. To address these challenges, this study conducted… More >

  • Open Access

    ARTICLE

    Plant Disease Detection Algorithm Based on Efficient Swin Transformer

    Wei Liu1,*, Ao Zhang

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3045-3068, 2025, DOI:10.32604/cmc.2024.058640 - 17 February 2025

    Abstract Plant diseases present a significant threat to global agricultural productivity, endangering both crop yields and quality. Traditional detection methods largely rely on manual inspection, a process that is not only labor-intensive and time-consuming but also subject to subjective biases and dependent on operators’ expertise. Recent advancements in Transformer-based architectures have shown substantial progress in image classification tasks, particularly excelling in global feature extraction. However, despite their strong performance, the high computational complexity and large parameter requirements of Transformer models limit their practical application in plant disease detection. To address these constraints, this study proposes an… More >

  • Open Access

    ARTICLE

    DCFNet: An Effective Dual-Branch Cross-Attention Fusion Network for Medical Image Segmentation

    Chengzhang Zhu1,2, Renmao Zhang1, Yalong Xiao1,2,*, Beiji Zou1, Xian Chai1, Zhangzheng Yang1, Rong Hu3, Xuanchu Duan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1103-1128, 2024, DOI:10.32604/cmes.2024.048453 - 16 April 2024

    Abstract Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis. Notably, most existing methods that combine the strengths of convolutional neural networks (CNNs) and Transformers have made significant progress. However, there are some limitations in the current integration of CNN and Transformer technology in two key aspects. Firstly, most methods either overlook or fail to fully incorporate the complementary nature between local and global features. Secondly, the significance of integrating the multi-scale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine… More >

Displaying 1-10 on page 1 of 15. Per Page