Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (35)
  • Open Access

    ARTICLE

    Constructing Straight Pores and Improving Mechanical Properties of Gangue-Based Porous Ceramics

    Hang Xu, Huiling Du*, Le Kang, Qiudi Cheng, Danni Feng, Siyu Xia

    Journal of Renewable Materials, Vol.9, No.12, pp. 2129-2141, 2021, DOI:10.32604/jrm.2021.016090

    Abstract The large-scale accumulation and pollution of solid mining waste is an urgent issue. Coal gangue is a prominent type of solid waste, and shows promise for use in high value-added products due to its content of many important compounds, including SiO2 and Al2O3. This study proposed the preparation of highly porous ceramics from coal gangue, coal slime, and coconut palm fibers. The ceramics were produced at a sintering temperature of 950°C with a fiber content of 6 wt%, which led to the formation of porous ceramics with a porosity of 66.93%, volume density of 1.0329 g/cm3 , compressive strength of… More > Graphic Abstract

    Constructing Straight Pores and Improving Mechanical Properties of Gangue-Based Porous Ceramics

  • Open Access

    ARTICLE

    Amylose Content, Morphology, Crystal Structure, and Thermal Properties of Starch Grains in Main and Ratoon Rice Crops

    Na Kuang, Huabin Zheng, Qiyuan Tang*, Yuanwei Chen, Xiaomin Wang, Youyi Luo

    Phyton-International Journal of Experimental Botany, Vol.90, No.4, pp. 1119-1230, 2021, DOI:10.32604/phyton.2021.014637

    Abstract Rice ratooning, or the production of a second rice crop from stubble after the harvest of the main crop, is considered to be a green and resource-efficient rice production system. The present study was conducted to examine variance in amylose content (AC), grain morphology, crystal structure, and thermal properties of starch between main- and ratoon-season rice of seven varieties. Ratoon-season rice grains had higher ACs and significantly lower transition gelatinization temperatures (To, Tp, and Tc) than did main-season rice grains. The relative crystallinity and lamellar peak intensity of ratoon-season rice starch were 7.89% and 20.38% lower, respectively, than those of… More >

  • Open Access

    ARTICLE

    The Influence of Two Natural Reinforcement Fibers on the Hygrothermal Properties of Earthen Plasters in Mogao Grottoes of China

    Wenbei Bi1, Zengfeng Yan1,*, Huan Zhao1, Lixin Sun2, Xudong Wang3,4, Zhengmo Zhang3

    Journal of Renewable Materials, Vol.8, No.12, pp. 1691-1710, 2020, DOI:10.32604/jrm.2020.012808

    Abstract Murals in Mogao Grottoes consist of three parts: support layer, earthen plasters and paint layer. The earthen plasters play a key role in the preservation of murals. It is a mixture of Dengban soil, sand, and plant fiber. Two different natural fibers, hemp fiber and cotton fiber, were reinforced to earthen plasters in the same percentage to evaluate the influence on hygrothermal performance. The two types of earthen plasters were studied: one containing hemp fiber in the fine plaster (HFP) and the other containing cotton fiber in the fine plaster (CFP). Specific heat capacity, dry thermal conductivity, water vapor permeability,… More >

  • Open Access

    Effect of Acetylation on the Mechanical and Thermal Properties of Soy Flour Elastomers

    Kendra A. Allen1, Sarah Cady2, David Grewell1*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 124-126, 2017, DOI:10.7569/JRM.2017.634139

    Abstract Biobased fillers were utilized as components in soy-elastomer composites. Soy flour is lightweight, low cost, and high strength, which makes it an ideal alternative to petroleum-derived fillers. However, poor interfacial adhesion and low dispersion within the polymer matrix are limiting factors for composite performance. Soy flour chemically pretreated by acetylation was compounded with synthetic rubber elastomers. In general, soy flour (as received) concentration in the composite is proportional to the ultimate strength. However, soyelastomer composites with acetylated filler performed similar to the neat elastomer. In addition, the pretreated composite’s thermal stability increased and exhibited less phase seperation compared to the… More >

  • Open Access

    ARTICLE

    Bio-Based Hyperbranched Toughener From Tannic Acid and Its Enhanced Solvent-Free Epoxy Resin with High Performance

    Jie Xu1,3, Jiayao Yang1, Peng Lin2, Xiaohuan Liu1,*, Jinjie Zhang1, Shenyuan Fu1,*, Yuxun Tang2,*

    Journal of Renewable Materials, Vol.7, No.12, pp. 1333-1346, 2019, DOI:10.32604/jrm.2019.07905

    Abstract It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin; however, this has remained a huge challenge. Herein, an eco-friendly, low-cost, and facile-fabricated bio-based hyperbranched toughener, carboxylic acid-functionalized tannic acid (CATA), was successfully prepared and applicated to the preparation of solvent-free epoxy resins. The mechanical performance, morphology, structural characterization, and thermal characterization of toughened epoxy resin system were studied. The toughened epoxy resin system with only 1.0wt% CATA reached the highest impact strength, 111% higher than the neat epoxy resin system. Notably, the tensile strength and elongation at break of toughened epoxy resin systems increased moderately… More >

  • Open Access

    ARTICLE

    Zinc Oxide Nano Particles Integrated Kenaf/Unsaturated Polyester BioComposite

    Mohammed Mohammed1, Bashir O. Betar2, Rozyanty Rahman1, Aeshah M. Mohammed3, Azlin F. Osman1, Muhammed Jaafar4, Tijjani Adam5,*, Omar S. Dahham5, Uda Hashim6, Nik Z. Noriman5

    Journal of Renewable Materials, Vol.7, No.10, pp. 967-982, 2019, DOI:10.32604/jrm.2019.07562

    Abstract Increasing need for materials with special features have brought various new inventions, one of the most promising hope for new material with special features and functionalities is composites materials. Thus, this study report an integration of zinc nanoparticles into kenaf/polyester polymer composite to introduce new behavior to the composite. The composite behaviors were compared for mechanical, thermal, moisture absorption and biodegradability properties. Prepared Zinc Oxide nanoparticles entrenched in the kenaf/polyestaer composites net structure through chemical bonds between kenaf/ZnO/polyester resin, existence of ZnO significantly influence the mechanical and thermals properties of composites. Thermal analysis based on (TGA) response revealed the integration… More >

  • Open Access

    ARTICLE

    Thermal and Mechanical Properties of Thermoplastic Starch and Poly(Vinyl Alcohol-Co-Ethylene) Blends

    Ana Clara Lancarovici Alves, Rafael Grande, Antonio José Felix Carvalho*

    Journal of Renewable Materials, Vol.7, No.3, pp. 245-252, 2019, DOI:10.32604/jrm.2019.00833

    Abstract The interest in thermoplastic starch (TPS) as a substitute material to replace conventional thermoplastics continues especially due its biodegradability, availability, low cost and because it is obtained from renewable sources. However, its poor mechanical properties and its high sensitivity to humidity have limited its use in several applications. Here, the copolymer poly (ethylene-co-vinyl alcohol) (EVOH), with two different ethylene contents, 27 and 44 mol% were blended with TPS by extrusion in order to overcome these limitations. The obtained blends were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), mechanical tensile testing, Scanning Electron Microscopy (SEM) and moisture absorption test.… More >

  • Open Access

    ARTICLE

    Structure and Properties of Polyamide 11 Nanocomposites Filled with Fibrous Palygorskite Clay

    B. Benobeidallah1, A. Benhamida1, A. Dorigato2,*, A. Sola3, M. Messori3, A. Pegoretti2

    Journal of Renewable Materials, Vol.7, No.1, pp. 89-102, 2019, DOI:10.32604/jrm.2019.00136

    Abstract Various amounts (up to 10 wt%) of palygorskite nanofibers functionalized by 3-aminopropyltriethoxysilane (APTES) coupling agent were used to reinforce polyamide 11 nanocomposites prepared by melt compounding. The covalent bonding of the silane on the palygorskite surface was confirmed by infrared spectroscopy and thermogravimetric analysis. X-ray diffraction revealed the retention of the α-form of polyamide crystals upon the addition of both natural and silane treated palygorskite nanorods. All the investigated nanocomposites showed an improvement of the thermal stability, especially when surface treated palygorskite nanofibers were considered. Tensile tests and dynamic mechanical thermal analyses on the prepared materials evidenced how the incorporation… More >

  • Open Access

    ARTICLE

    Viscoelastic and Thermal Properties of Polyurethane Foams Obtained from Renewable and Recyclable Components

    S. Gaidukovs1,2,*, G. Gaidukova2, A. Ivdre1,3, U. Cabulis3

    Journal of Renewable Materials, Vol.6, No.7, pp. 755-763, 2018, DOI:10.7569/JRM.2018.634112

    Abstract This article deals with the study of the viscoelastic and thermal properties of polyurethane (PU) rigid foams from biobased and recycled components. Rapeseed oil (RO) and recycled poly(ethylene terephthalate) (PET) were used to synthesize PU polyols. Addition of adipic acid (ADA) to polyol resulted in improved thermal and viscoelastic properties of foam materials. ADA content was varied from 1 to 6 wt%. Results of the dynamic mechanical spectra indicate an increase of the storage modulus E′ and the loss modulus E″ in the whole temperature range for specimens with higher loading of ADA. In addition, damping factor shifted to higher… More >

  • Open Access

    ARTICLE

    Mechanical and Thermal Properties of Sugar Palm Fiber Reinforced Thermoplastic Polyurethane Composites: Effect of Silane Treatment and Fiber Loading

    A. Atiqah1, M. Jawaid1,*, S. M. Sapuan1,2, M. R. Ishak3

    Journal of Renewable Materials, Vol.6, No.5, pp. 477-492, 2018, DOI:10.7569/JRM.2017.634188

    Abstract The aim of the present study was to develop sugar palm fiber (SPF) reinforced thermoplastic polyurethane (TPU) composites and to investigate the effects of fiber surface modification by 2% silane treatment and fiber loading (0, 10, 20, 30, 40 and 50 wt%) on the mechanical and thermal properties of the obtained composites. Surface treatment was employed to improve the fiber-matrix interface, which was expected to boost the mechanical strength of the composites, in terms of tensile, flexural and impact properties. Thermal properties were also investigated by thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) to assess the thermal stability… More >

Displaying 21-30 on page 3 of 35. Per Page