Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation

    Hamza Murad Khan1, Anwar Khan1,*, Santos Gracia Villar2,3,4, Luis Alonso Dzul Lopez2,5,6, Abdulaziz Almaleh7, Abdullah M. Al-Qahtani8

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3369-3388, 2025, DOI:10.32604/cmc.2025.060474 - 16 April 2025

    Abstract Traffic forecasting with high precision aids Intelligent Transport Systems (ITS) in formulating and optimizing traffic management strategies. The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity. To address this problem, this paper uses the Tree-structured Parzen Estimator (TPE) to tune the hyperparameters of the Long Short-term Memory (LSTM) deep learning framework. The Tree-structured Parzen Estimator (TPE) uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples. This ensures fast convergence in… More >

  • Open Access

    ARTICLE

    Heuristic Feature Engineering for Enhancing Neural Network Performance in Spatiotemporal Traffic Prediction

    Bin Sun1, Yinuo Wang1, Tao Shen1,*, Lu Zhang1, Renkang Geng2

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4219-4236, 2025, DOI:10.32604/cmc.2025.060567 - 06 March 2025

    Abstract Traffic datasets exhibit complex spatiotemporal characteristics, including significant fluctuations in traffic volume and intricate periodical patterns, which pose substantial challenges for the accurate forecasting and effective management of traffic conditions. Traditional forecasting models often struggle to adequately capture these complexities, leading to suboptimal predictive performance. While neural networks excel at modeling intricate and nonlinear data structures, they are also highly susceptible to overfitting, resulting in inefficient use of computational resources and decreased model generalization. This paper introduces a novel heuristic feature extraction method that synergistically combines the strengths of non-neural network algorithms with neural networks… More >

  • Open Access

    REVIEW

    An Integrated Analysis of Yield Prediction Models: A Comprehensive Review of Advancements and Challenges

    Nidhi Parashar1, Prashant Johri1, Arfat Ahmad Khan5, Nitin Gaur1, Seifedine Kadry2,3,4,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 389-425, 2024, DOI:10.32604/cmc.2024.050240 - 18 July 2024

    Abstract The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research. Deep learning (DL) and machine learning (ML) models effectively deal with such challenges. This research paper comprehensively analyses recent advancements in crop yield prediction from January 2016 to March 2024. In addition, it analyses the effectiveness of various input parameters considered in crop yield prediction models. We conducted an in-depth search and gathered studies that employed crop modeling and AI-based methods to predict crop yield. The… More >

  • Open Access

    REVIEW

    Deep Learning for Financial Time Series Prediction: A State-of-the-Art Review of Standalone and Hybrid Models

    Weisi Chen1,*, Walayat Hussain2,*, Francesco Cauteruccio3, Xu Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 187-224, 2024, DOI:10.32604/cmes.2023.031388 - 30 December 2023

    Abstract Financial time series prediction, whether for classification or regression, has been a heated research topic over the last decade. While traditional machine learning algorithms have experienced mediocre results, deep learning has largely contributed to the elevation of the prediction performance. Currently, the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking, making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better, what techniques and components are involved, and how the model can be designed and implemented. This review article provides an… More > Graphic Abstract

    Deep Learning for Financial Time Series Prediction: A State-of-the-Art Review of Standalone and Hybrid Models

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for PM2.5 Concentration Prediction in Smart Environmental Monitoring

    Minh Thanh Vo1, Anh H. Vo2, Huong Bui3, Tuong Le4,5,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3029-3041, 2023, DOI:10.32604/iasc.2023.034636 - 15 March 2023

    Abstract Nowadays, air pollution is a big environmental problem in developing countries. In this problem, particulate matter 2.5 (PM2.5) in the air is an air pollutant. When its concentration in the air is high in developing countries like Vietnam, it will harm everyone’s health. Accurate prediction of PM2.5 concentrations can help to make the correct decision in protecting the health of the citizen. This study develops a hybrid deep learning approach named PM25-CBL model for PM2.5 concentration prediction in Ho Chi Minh City, Vietnam. Firstly, this study analyzes the effects of variables on PM2.5 concentrations in… More >

  • Open Access

    ARTICLE

    Hyperparameter Tuned Bidirectional Gated Recurrent Neural Network for Weather Forecasting

    S. Manikandan1,*, B. Nagaraj2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 761-775, 2022, DOI:10.32604/iasc.2022.023398 - 08 February 2022

    Abstract Weather forecasting is primarily related to the prediction of weather conditions that becomes highly important in diverse applications like drought discovery, severe weather forecast, climate monitoring, agriculture, aviation, telecommunication, etc. Data-driven computer modelling with Artificial Neural Networks (ANN) can be used to solve non-linear problems. Presently, Deep Learning (DL) based weather forecasting models can be designed to accomplish reasonable predictive performance. In this aspect, this study presents a Hyper Parameter Tuned Bidirectional Gated Recurrent Neural Network (HPT-BiGRNN) technique for weather forecasting. The HPT-BiGRNN technique aims to utilize the past weather data for training the BiGRNN… More >

  • Open Access

    ARTICLE

    Surge Fault Detection of Aeroengines Based on Fusion Neural Network

    Desheng Zheng1, Xiaolan Tang1,*, Xinlong Wu1, Kexin Zhang1, Chao Lu2, Lulu Tian3

    Intelligent Automation & Soft Computing, Vol.29, No.3, pp. 815-826, 2021, DOI:10.32604/iasc.2021.017737 - 01 July 2021

    Abstract Aeroengine surge fault is one of the main causes of flight accidents. When a surge occurs, it is hard to detect it in time and take anti-surge measures correctly. Recently, people have been applying detection methods based on mathematical models and expert knowledge. Due to difficult modeling and limited failure-mode coverage of these methods, early surge detection cannot be achieved. To address these problems, firstly, this paper introduced the data of six main sensors related to the aeroengine surge fault, such as, total pressure at compressor (high pressure rotor) outlet (Pt3), high pressure compressor rotor More >

  • Open Access

    ARTICLE

    Stock Price Prediction Using Predictive Error Compensation Wavelet Neural Networks

    Ajla Kulaglic1,*, Burak Berk Ustundag2

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3577-3593, 2021, DOI:10.32604/cmc.2021.014768 - 06 May 2021

    Abstract Machine Learning (ML) algorithms have been widely used for financial time series prediction and trading through bots. In this work, we propose a Predictive Error Compensated Wavelet Neural Network (PEC-WNN) ML model that improves the prediction of next day closing prices. In the proposed model we use multiple neural networks where the first one uses the closing stock prices from multiple-scale time-domain inputs. An additional network is used for error estimation to compensate and reduce the prediction error of the main network instead of using recurrence. The performance of the proposed model is evaluated using… More >

  • Open Access

    ARTICLE

    Multi-Span and Multiple Relevant Time Series Prediction Based on Neighborhood Rough Set

    Xiaoli Li1, Shuailing Zhou1, Zixu An2,*, Zhenlong Du1

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3765-3780, 2021, DOI:10.32604/cmc.2021.012422 - 01 March 2021

    Abstract Rough set theory has been widely researched for time series prediction problems such as rainfall runoff. Accurate forecasting of rainfall runoff is a long standing but still mostly significant problem for water resource planning and management, reservoir and river regulation. Most research is focused on constructing the better model for improving prediction accuracy. In this paper, a rainfall runoff forecast model based on the variable-precision fuzzy neighborhood rough set (VPFNRS) is constructed to predict Watershed runoff value. Fuzzy neighborhood rough set define the fuzzy decision of a sample by using the concept of fuzzy neighborhood.… More >

  • Open Access

    ARTICLE

    Prediction of Time Series Empowered with a Novel SREKRLS Algorithm

    Bilal Shoaib1, Yasir Javed2, Muhammad Adnan Khan3,*, Fahad Ahmad4, Rizwan Majeed5, Muhammad Saqib Nawaz1, Muhammad Adeel Ashraf6, Abid Iqbal2, Muhammad Idrees7

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1413-1427, 2021, DOI:10.32604/cmc.2021.015099 - 05 February 2021

    Abstract For the unforced dynamical non-linear statespace model, a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article. The proposed algorithm lends itself towards the parallel implementation as in the FPGA systems. With the help of an ortho-normal triangularization method, which relies on numerically stable givens rotation, matrix inversion causes a computational burden, is reduced. Matrix computation possesses many excellent numerical properties such as singularity, symmetry, skew symmetry, and triangularity is achieved by using this algorithm. The proposed method is validated for the prediction of stationary and… More >

Displaying 1-10 on page 1 of 12. Per Page