Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access

    ARTICLE

    Variation in agronomic traits and lycopene in advanced tomato (Solanum lycopersicum L.) cultivars

    Gaspar-Peralta P1, JC Carrillo-Rodríguez1, JL Chávez-Servia, AM Vera-Guzmán2, I Pérez-León1

    Phyton-International Journal of Experimental Botany, Vol.81, pp. 15-22, 2012, DOI:10.32604/phyton.2012.81.015

    Abstract In order to evaluate the agronomic behavior, genotypic variation, lycopene content, and other components of fruit quality, eight advanced tomato lines were planted in greenhouses during two crop cycles, August-December 2008 and February-July 2009. Tomato lines showed significant differences in leaf length (LL), stem diameter (SD), number of flowers per branch (FLNB), number of fruits per branch (FRNB), locules per fruit (LPF), and fruit length (FRL), and the greatest phenotypic expression in fruit traits was quantified in August-December 2008. Environmental variance was significantly higher than the genotypic and genotype-environment interaction variances in LL, FRNB, fruits per plant, average weight of… More >

  • Open Access

    ARTICLE

    Control Alternatives for Damping-Off in Tomato Seedling Production

    A. C. Michel-Aceves1, J. F. Díaz-Nájera1, R. Ariza-Flores2, M. A. Otero-Sánchez1, R. Escobar-Martínez1 and C. H. Avendaño-Arrazate3,*

    Phyton-International Journal of Experimental Botany, Vol.88, No.3, pp. 325-333, 2019, DOI:10.32604/phyton.2019.06777

    Abstract In two tomato genotypes, we assessed control alternatives for damping-off with combinations of chemical fungicides and native/commercial strains of biological agents. Forty treatments consisting of 19 levels of mixing products, chemical fungicides, native strains and commercial products from biological control agents, and untreated treatment were used onto Ramsés and Toro hybrids. They were distributed on an incomplete block design in divided plots arrangement, where genotypes constitute the larger ones and the 8-repetition mixed products, the smaller ones. Putting 180 mL of fungal complexes, made of spores and mycellium Fusarium-solani (2 × 106 UFC), Rhizoctonia-solani (1 × 106 UFC), Phytophthora-capsici (1… More >

  • Open Access

    ARTICLE

    The Cellular Automaton Model of Microscopic Traffic Simulation Incorporating Feedback Control of Various Kinds of Drivers

    Yonghua Zhou1, Chao Mi1, Xun Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.6, pp. 533-550, 2012, DOI:10.3970/cmes.2012.086.533

    Abstract The cellular automaton (CA) model for traffic flow describes the restrictive vehicle movements using the distance headway (gap) between two adjacent vehicles. However, the autonomous and synergistic behaviors also exist in the vehicle movements. This paper makes an attempt to propose a microscopic traffic simulation model such that the feedback control behavior during the driving process is incorporated into the CA model. The acceleration, speed holding and deceleration are manipulated by the difference between the gap and the braking reference distance the driver perceives, which is generally observed in the realistic traffic. The braking reference distance is related to the… More >

  • Open Access

    ARTICLE

    Modeling of Dendritic Growth in Alloy Solidification with Melt Convection

    C.P. Hong1, M.F. Zhu2, S.Y. Lee1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.4, pp. 247-260, 2006, DOI:10.3970/fdmp.2006.002.247

    Abstract In typical solidification processes the flow of molten metal is usually regarded as an unavoidable phenomenon potentially affecting the morphology of dendritic growth. Fundamental understanding of such flow is thus important for predicting and controlling solidification microstructures. This paper presents numerical simulations on the evolution of dendritic microstructures with melt convection. A two-dimensional modified cellular automaton (MCA) coupled with a transport model is developed to simulate solidification of binary and ternary alloys in the presence of fluid flow. This model takes into account the effects of the constitutional undercooling and curvature undercooling on the equilibrium interface temperature. It also considers… More >

  • Open Access

    ARTICLE

    Heat Transfer in Composite Beams using Combined Cellular Automaton and Fibre Model

    W.F.Yuan1, K.H.Tan 1

    CMC-Computers, Materials & Continua, Vol.13, No.1, pp. 49-62, 2009, DOI:10.3970/cmc.2009.013.049

    Abstract A simple cellular automaton (CA) scheme is proposed to simulate heat conduction in anisotropic domains. The CA is built on random nodes rather than an irregular grid. The local rule used in the CA is defined by physical concepts instead of differential equations. The accuracy of the proposed approach is verified by classical examples. As an application of the proposed method, the CA approach is incorporated into fibre model which is widely used in finite element analysis to calculate the temperature distribution on the cross-section of composite beams. Numerical examples demonstrate that the proposed scheme can be conveniently applied to… More >

Displaying 41-50 on page 5 of 45. Per Page