Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (153)
  • Open Access

    ARTICLE

    Use of Flow Simulation to Develop Robust Injection and Vent Schemes that Account for Process and Material Variability in Liquid Composite Molding Process

    J. Wang1, E. Andres, P. Simacek, S.G.Advani

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.3, pp. 155-182, 2012, DOI:10.3970/cmes.2012.088.155

    Abstract In Liquid Composite Molding (LCM) processes, the process design requires an infusion and venting scheme which will saturate all the empty spaces between the fibers during mold filling resulting in a composite part without voids. However, the inherent material and process variability can change the filling patterns significantly which complicate this task. The objective of this work is to develop methodologies and tools to automate infusion process design and integrate it within the CAD design environment. The methodologies and algorithms developed examine the designed part geometry and material layups for ease of manufacturing with feasible infusion schemes by accounting for… More >

  • Open Access

    ARTICLE

    In-Plane Vibration of a Beam Picking and Placing a Mass Along Arbitrary Curved Tracking

    Shueei-Muh Lin 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.72, No.1, pp. 17-36, 2011, DOI:10.3970/cmes.2011.072.017

    Abstract In this study, examine the in-plane vibration of a robot arm picking and placing a mass along arbitrary curved tracking. This mathematical model is established. It is a moving mass problem. Due to the effect of movement along arbitrary curved tracking, the corresponding differential equation is nonlinear with the time-dependent coefficients and non-homogenous boundary conditions. So far, a few literatures devoted to investigate this system due to its complexity. The solution method procedure for this system is presented. It integrates several methods as the transform of variable, the subsection method, the mode superposition method, and the Green function method. Meanwhile,… More >

  • Open Access

    ARTICLE

    Developing Mechanistic Understanding of Granular Behaviour in Complex Moving Geometry using the Discrete Element Method. Part A: Measurement and Reconstruction of TurbulaMixer Motion using Positron Emission Particle Tracking

    M. Marigo1,2, D. L. Cairns1, M. Davies1, M. Cook3,A. Ingram2,4,5, E. H. Stitt1

    CMES-Computer Modeling in Engineering & Sciences, Vol.59, No.3, pp. 217-238, 2010, DOI:10.3970/cmes.2010.059.217

    Abstract In this work the complex motion of the Turbulamixer has been measured by Multiple-Positron Emission Particle Tracking (Multiple PEPT) in order to set-up a DEM numerical model. Positron emitting radioactive tracers were attached to three of the pivot bearings on the shaft of the mixer to enable the rotation and translation of the mixer chamber to be tracked in the PEPT camera. The measured movement was mathematically reconstructed and imported into DEM in order to apply the same movement to the modelled vessel. The three-dimensional motion of particles in a vessel located in the Turbula mixer was then calculated using… More >

  • Open Access

    ARTICLE

    Three-Dimensional Carotid Plaque Progression Simulation Using Meshless Generalized Finite Difference Method Based on Multi-Year MRI Patient-Tracking Data

    Chun Yang1,2, Dalin Tang2,3 Satya Atluri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.1, pp. 51-76, 2010, DOI:10.3970/cmes.2010.057.051

    Abstract Cardiovascular disease (CVD) is becoming the number one cause of death worldwide. Atherosclerotic plaque rupture and progression are closely related to most severe cardiovascular syndromes such as heart attack and stroke. Mechanisms governing plaque rupture and progression are not well understood. A computational procedure based on three-dimensional meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data was introduced to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Participating patients were scanned three times (T1, T2, and T3, at intervals of about 18 months) to obtain plaque progression data. Vessel wall thickness (WT) changes… More >

  • Open Access

    ARTICLE

    Tracking Features in Image Sequences with Kalman Filtering, Global Optimization, Mahalanobis Distance and a Management Model

    Raquel R. Pinho1, João Manuel R. S. Tavares1

    CMES-Computer Modeling in Engineering & Sciences, Vol.46, No.1, pp. 51-76, 2009, DOI:10.3970/cmes.2009.046.051

    Abstract This work addresses the problem of tracking feature points along image sequences. In order to analyze the undergoing movement, an approach based on the Kalman filtering technique has been used, which basically carries out the estimation and correction of the features' movement in every image frame. So as to integrate the measurements obtained from each image into the Kalman filter, a data optimization process has been adopted to achieve the best global correspondence set. The proposed criterion minimizes the cost of global matching, which is based on the Mahalanobis distance. A management model is employed to manage the features being… More >

  • Open Access

    ARTICLE

    Simulation of Mastic Erosion from Open-Graded Asphalt Mixes Using a Hybrid Lagrangian-Eulerian Finite Element Approach

    N.Kringos1, A.Scarpas1, A.P.S. Selvadurai2

    CMES-Computer Modeling in Engineering & Sciences, Vol.28, No.3, pp. 147-160, 2008, DOI:10.3970/cmes.2008.028.147

    Abstract This paper presents a numerical approach for the modeling of water flow induced mastic erosion from a permeable asphalt mix and is part of an ongoing effort to model moisture-induced damage in asphalt mixes. Due to the complex composite structure of asphalt mixtures, moisture can infiltrate in various ways into the components and have an adverse effect on its mechanical performance. Depending on the gradation of the asphalt aggregates and the mixing procedure, asphalt structures with a variable permeability may result. Open-graded asphalt mixes are designed with a high interconnected air void content to serve as a drainage layer on… More >

  • Open Access

    ARTICLE

    Meshless Generalized Finite Difference Method and Human Carotid Atherosclerotic Plaque Progression Simulation Using Multi-Year MRI Patient-Tracking Data

    Chun Yang1, Dalin Tang2, Chun Yuan3, William Kerwin2, Fei Liu3, Gador Canton3, Thomas S. Hatsukami3,4, Satya Atluri5

    CMES-Computer Modeling in Engineering & Sciences, Vol.28, No.2, pp. 95-108, 2008, DOI:10.3970/cmes.2008.028.095

    Abstract Atherosclerotic plaque rupture and progression have been the focus of intensive investigations in recent years. Plaque rupture is closely related to most severe cardiovascular syndromes such as heart attack and stroke. A computational procedure based on meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data was introduced to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Participating patients were scanned three times (T1,T2, and T3, at intervals of about 18 months) to obtain plaque progression data. Vessel wall thickness (WT) changes were used as the measure for plaque progression. Since there was insufficient… More >

  • Open Access

    ARTICLE

    Numerical Simulation of an Axisymmetric Compound Droplet by Three-Fluid Front-Tracking Method

    S. Homma1, M. Yokotsuka1, T. Tanaka1, K. Moriguchi1, J. Koga1, G. Tryggvason2

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 231-240, 2011, DOI:10.3970/fdmp.2011.007.231

    Abstract We develop a three-fluid front-tracking method in order to simulate the motion of an axisymmetry compound droplet, which consists of three immiscible fluids separated by two different interfaces. The two interfaces of the compound droplet are represented by two different sets of the front-tracking elements immersed on the Eulerian grid mesh, where the velocities and the pressure are calculated. The density and viscosity profiles with jumps at the interfaces are successfully determined from the location and the connection information of the front-tracking elements. The motion of a compound droplet is simulated on axisymmetric cylindrical coordinates. The results show that the… More >

  • Open Access

    ARTICLE

    An Automated Player Detection and Tracking in Basketball Game

    P. K. Santhosh1,*, B. Kaarthick2

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 625-639, 2019, DOI:10.32604/cmc.2019.05161

    Abstract Vision-based player recognition is critical in sports applications. Accuracy, efficiency, and Low memory utilization is alluring for ongoing errands, for example, astute communicates and occasion classification. We developed an algorithm that tracks the movements of different players from a video of a basketball game. With their position tracked, we then proceed to map the position of these players onto an image of a basketball court. The purpose of tracking player is to provide the maximum amount of information to basketball coaches and organizations, so that they can better design mechanisms of defence and attack. Overall, our model has a high… More >

  • Open Access

    RETRACTION

    RETRACTED: Implementation System of Human Eye Tracking Algorithm Based on FPGA

    Zhong Liu1,2, Xin’an Wang1, Chengjun Sun1, Ken Lu3

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 653-664, 2019, DOI:10.32604/cmc.2019.04597

    Abstract With the high-speed development of transportation industry, highway traffic safety has become a considerable problem. Meanwhile, with the development of embedded system and hardware chip, in recent years, human eye detection eye tracking and positioning technology have been more and more widely used in man-machine interaction, security access control and visual detection.
    In this paper, the high parallelism of FPGA was utilized to realize an elliptical approximate real-time human eye tracking system, which was achieved by the series register structure and random sample consensus (RANSAC), thus improving the speed of image processing without using external memory. Because eye images acquired by… More >

Displaying 141-150 on page 15 of 153. Per Page