Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    Transcriptomics Provides New Insights into Resistance Mechanisms in Wheat Infected with Puccinia striiformis f. sp. tritici

    Jing Zhang1,#, Huifen Qiao1,#, Shenglong Wang1,#, Jiawei Yuan1, Qingsong Ba1, Gensheng Zhang1,2,*, Guiping Li1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.9, pp. 2701-2718, 2025, DOI:10.32604/phyton.2025.070017 - 30 September 2025

    Abstract Wheat stripe rust, a devastating disease caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), poses a significant threat to global wheat production. Growing resistant cultivars is a crucial strategy for wheat stripe rust management. However, the underlying molecular mechanisms of wheat resistance to Pst remain incompletely understood. To unravel these mechanisms, we employed high-throughput RNA sequencing (RNA-Seq) to analyze the transcriptome of the resistant wheat cultivar Mianmai 46 (MM46) at different time points (24, 48, and 96 h) post-inoculation with the Pst race CYR33. The analysis revealed that Pst infection significantly altered the expression of genes… More >

  • Open Access

    ARTICLE

    Comparative Analyses of Physiological and Transcriptomic Responses Reveal Chive (Allium ascalonicum L.) Bolting Tolerance Mechanisms

    Siyang Ou1, Liuyan Yang1, Tingting Yuan1, Mutong Li1, Guohui Liao2, Wanping Zhang1, Guangdong Geng1,*, Suqin Zhang1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.8, pp. 2441-2460, 2025, DOI:10.32604/phyton.2025.068368 - 29 August 2025

    Abstract Chive (Allium ascalonicum L.), a seeding-vernalization-type vegetable, is prone to bolting. To explore the physiological and molecular mechanisms of its bolting, bolting-prone (‘BA’) and bolting-resistant (‘WA’) chives were sampled at the vegetative growth, floral bud differentiation, and bud emergence stages. No bolting was observed in bolting-resistant ‘WA’ on the 130th day after planting, whereas the bolting reached 39.22% in bolting-prone ‘BA’, which was significantly higher than that of ‘WA’. The contents of gibberellins, abscisic acid, and zeatin riboside after floral bud differentiation in ‘WA’ were significantly less than in ‘BA’, whereas the indoleacetic acid content in… More >

  • Open Access

    ARTICLE

    Physiological and Biochemical Responses and Non-Parametric Transcriptome Analysis for the Curcumin-Induced Improvement of Saline-Alkali Resistance in Akebia trifoliate (Thunb.) Koidz

    Xiaoqin Li, Yongfu Zhang*, Zhen Ren, Jiao Chen, Zuqin Qiao, Xingmei Tao, Xuan Yi, Kai Wang, Zhao Liu

    Phyton-International Journal of Experimental Botany, Vol.94, No.8, pp. 2529-2550, 2025, DOI:10.32604/phyton.2025.066894 - 29 August 2025

    Abstract Soil salinization is a major abiotic stress that hampers plant development and significantly reduces agricultural productivity, posing a serious challenge to global food security. Akebia trifoliata (Thunb.) Koidz, a species within the genus Akebia Decne., is valued for its use in food, traditional medicine, oil production, and as an ornamental plant. Curcumin, widely recognized for its pharmacological properties including anti-cancer, anti-neuroinflammatory, and anti-fibrotic effects, has recently drawn interest for its potential roles in plant stress responses. However, its impact on plant tolerance to saline-alkali stress remains poorly understood. In this study, the effects of curcumin on… More >

  • Open Access

    ARTICLE

    Transcriptome Analysis Provides New Insights into Bulbil Formation in Bistorta vivipara

    Weimin Zhao1, Guomin Shi2,3, Jialei Guo4, Guifang He1, Peilan Li1, Xiaoying Ren1, Leqi Yang1, Taikun Qi1, Tao He1,5,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.2, pp. 393-406, 2025, DOI:10.32604/phyton.2025.059531 - 06 March 2025

    Abstract Bistorta vivipara is a facultative reproductive plant capable of asexual reproduction through underground rhizomes and bulbils, as well as sexual reproduction via seeds. The phenomenon of vegetative organ vivipary is a complex biological process regulated by a network of genes. However, the developmental mechanism regulating bulbil vivipary in B. vivipara remains largely unexplored. This study investigated different developmental stages of B. vivipara using RNA sequencing and transcriptome analysis. Approximately 438 million high-quality reads were generated, with over 61.65% of the data mapped to the de novo transcriptome sequence. A total of 154,813 reads were matched in at least one More >

  • Open Access

    ARTICLE

    Transcriptome Analysis of Derris fordii and Derris elliptica to Identify Potential Genes Involved in Rotenoid Biosynthesis

    Yanlin Pan1, Yibin Zhang1, Xingui Wang1, Hongbo Qin1, Lunfa Guo1,2,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.1, pp. 123-136, 2025, DOI:10.32604/phyton.2025.059598 - 24 January 2025

    Abstract Derris fordii and Derris elliptica belong to the Derris genus of the Fabaceae family, distinguished by their high isoflavonoid content, particularly rotenoids, which hold significance in pharmaceuticals and agriculture. Rotenone, as a prominent rotenoid, has a longstanding history of use in pesticides, veterinary applications, medicine, and medical research. The accumulation of rotenoids within Derris plants adheres to species-specific and tissue-specific patterns and is also influenced by environmental factors. Current research predominantly addresses extraction techniques, pharmacological applications, and pesticide formulations, whereas investigations into the biosynthesis pathway and regulatory mechanism of rotenoids remain relatively scarce. In this study, we… More >

  • Open Access

    ARTICLE

    Comparative Transcriptomic Analysis of Two Tomato Cultivars with Different Shelf-Life Traits

    Abdul Karim Amin1, Yan He1, Xianglong Wang1, Pengwei Li1, Muhammad Ahmad Hassan2, Mohammad Yousof Soltani3, Yiling Zhang1, Mohammad Alem Amin4, Ahmad Shah Ahmadzai5, Yajing Liu1,3,*, Songhu Wang1,3,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 2075-2093, 2024, DOI:10.32604/phyton.2024.054641 - 30 August 2024

    Abstract Tomato (Solanum lycopersicum) is a perishable fruit because of its fast water loss and susceptibility to pathogens in the post-harvest stage, which leads to huge economic losses every year. In this study, firstly from 19 tomato cultivars, we screened out two cultivars, Riogrand and SalarF1, having long and short shelf-life spans, respectively. Secondly, shelf-life analysis was carried out for both cultivars at room temperature. Results exhibited that Riogrand showed higher firmness and less weight loss than SalarF1. The ethylene production was higher in SalarF1, compared with Riogrand during post-harvest storages. We performed transcriptomic analysis of both… More >

  • Open Access

    ARTICLE

    Transcriptome Analysis of Inflorescence Development at the Five-Leaf Stage in Castor (Ricinus communis L.)

    Yong Zhao1,#, Yaxuan Jiang3,#, Li Wen1, Rui Luo2, Guorui Li2, Jianjun Di2, Mingda Yin2, Zhiyan Wang2, Fenglan Huang2,4,5,6,7,*, Fanjuan Meng3,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 713-723, 2024, DOI:10.32604/phyton.2024.047657 - 29 April 2024

    Abstract The yield of castor is influenced by the type of inflorescence and the proportion of female flowers. However, there are few studies on the genetic mechanism involved in the development and differentiation of castor inflorescences. In this study, we performed transcriptomic analyses of three different phenotypes of inflorescences at the five-leaf stage. In comparison to the MI (complete pistil without willow leaves), 290 and 89 differentially expressed genes (DEGs) were found in the SFI (complete pistil with willow leaves) and the BI (monoecious inflorescence), respectively. Among the DEGs, 104 and 88 were upregulated in the… More >

  • Open Access

    ARTICLE

    Physiological and Transcriptome Analysis Illuminates the Molecular Mechanisms of the Drought Resistance Improved by Alginate Oligosaccharides in Triticum aestivum L.

    Yunhong Zhang1,2,*, Yonghui Yang1,2, Jiawei Mao1,2

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 185-212, 2024, DOI:10.32604/phyton.2023.046811 - 27 February 2024

    Abstract Alginate oligosaccharides (AOS) enhance drought resistance in wheat (Triticum aestivum L.), but the definite mechanisms remain largely unknown. The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000. The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress. A total of 10,064 and 15,208 differentially expressed unigenes (DEGs) obtained from the AOS treatment and control samples at 24 and 72 h after dehydration, respectively, were mainly enriched in the biosynthesis of… More >

  • Open Access

    EDITORIAL

    Editorial: Transcriptome analysis in tumor microenvironment and tumor heterogeneity

    JINHUI LIU1,*, JIAHENG XIE2,*, PEIXIN DONG3

    Oncology Research, Vol.32, No.1, pp. 99-100, 2024, DOI:10.32604/or.2023.045719 - 15 November 2023

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Transcriptome Analysis of Molecular Mechanisms Underlying Phenotypic Variation in Phaseolus vulgaris Mutant ‘nts’

    Limin Yin#, Chang Liu#, Zicong Liang, Dajun Liu, Guojun Feng, Zhishan Yan*, Xiaoxu Yang*

    Phyton-International Journal of Experimental Botany, Vol.92, No.11, pp. 2981-2998, 2023, DOI:10.32604/phyton.2023.043151 - 24 October 2023

    Abstract The phenotype of a common bean plant is often closely related to its yield, and the yield of plants with reduced height or poor stem development during growth is low. Mutants serve as an essential gene resource for common bean breeding genetic research. Although model plants and crops are studied to comprehend the molecular mechanisms and genetic basis of plant phenotypes, the molecular mechanism of phenotypic variation in common beans remains underexplored. We here used the mutant ‘nts’ as material for transcriptome sequencing analysis. This mutant was obtained through 60Co-γ irradiation from the common bean variety… More >

Displaying 1-10 on page 1 of 32. Per Page