Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (236)
  • Open Access

    ARTICLE

    Grid-Supplied Load Prediction under Extreme Weather Conditions Based on CNN-BiLSTM-Attention Model with Transfer Learning

    Qingliang Wang1, Chengkai Liu1, Zhaohui Zhou1, Ye Han1, Luebin Fang2, Moxuan Zhao3, Xiao Cao3,*

    Energy Engineering, Vol.122, No.11, pp. 4715-4732, 2025, DOI:10.32604/ee.2025.068105 - 27 October 2025

    Abstract Grid-supplied load is the traditional load minus new energy generation, so grid-supplied load forecasting is challenged by uncertainties associated with the total energy demand and the energy generated off-grid. In addition, with the expansion of the power system and the increase in the frequency of extreme weather events, the difficulty of grid-supplied load forecasting is further exacerbated. Traditional statistical methods struggle to capture the dynamic characteristics of grid-supplied load, especially under extreme weather conditions. This paper proposes a novel grid-supplied load prediction model based on Convolutional Neural Network-Bidirectional LSTM-Attention mechanism (CNN-BiLSTM-Attention). The model utilizes transfer… More >

  • Open Access

    ARTICLE

    A Hybrid Model of Transfer Learning and Convolutional Neural Networks for Accurate Coffee Leaf Miner (CLM) Classification

    Nameer Baht1,*, Enrique Domínguez1,2,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4441-4455, 2025, DOI:10.32604/cmc.2025.069528 - 23 October 2025

    Abstract Coffee is an important agricultural commodity, and its production is threatened by various diseases. It is also a source of concern for coffee-exporting countries, which is causing them to rethink their strategies for the future. Maintaining crop production requires early diagnosis. Notably, Coffee Leaf Miner (CLM) Machine learning (ML) offers promising tools for automated disease detection. Early detection of CLM is crucial for minimising yield losses. However, this study explores the effectiveness of using Convolutional Neural Networks (CNNs) with transfer learning algorithms ResNet50, DenseNet121, MobileNet, Inception, and hybrid VGG19 for classifying coffee leaf images as… More >

  • Open Access

    ARTICLE

    Transfer Learning-Based Approach with an Ensemble Classifier for Detecting Keylogging Attack on the Internet of Things

    Yahya Alhaj Maz1, Mohammed Anbar1, Selvakumar Manickam1,*, Mosleh M. Abualhaj2, Sultan Ahmed Almalki3, Basim Ahmad Alabsi4

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5287-5307, 2025, DOI:10.32604/cmc.2025.068257 - 23 October 2025

    Abstract The Internet of Things (IoT) is an innovation that combines imagined space with the actual world on a single platform. Because of the recent rapid rise of IoT devices, there has been a lack of standards, leading to a massive increase in unprotected devices connecting to networks. Consequently, cyberattacks on IoT are becoming more common, particularly keylogging attacks, which are often caused by security vulnerabilities on IoT networks. This research focuses on the role of transfer learning and ensemble classifiers in enhancing the detection of keylogging attacks within small, imbalanced IoT datasets. The authors propose… More >

  • Open Access

    ARTICLE

    Robust Multi-Label Cartoon Character Classification on the Novel Kral Sakir Dataset Using Deep Learning Techniques

    Candan Tumer1, Erdal Guvenoglu2, Volkan Tunali3,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5135-5158, 2025, DOI:10.32604/cmc.2025.067840 - 23 October 2025

    Abstract Automated cartoon character recognition is crucial for applications in content indexing, filtering, and copyright protection, yet it faces a significant challenge in animated media due to high intra-class visual variability, where characters frequently alter their appearance. To address this problem, we introduce the novel Kral Sakir dataset, a public benchmark of 16,725 images specifically curated for the task of multi-label cartoon character classification under these varied conditions. This paper conducts a comprehensive benchmark study, evaluating the performance of state-of-the-art pretrained Convolutional Neural Networks (CNNs), including DenseNet, ResNet, and VGG, against a custom baseline model trained More >

  • Open Access

    ARTICLE

    Hybrid CNN Architecture for Hot Spot Detection in Photovoltaic Panels Using Fast R-CNN and GoogleNet

    Carlos Quiterio Gómez Muñoz1, Fausto Pedro García Márquez2,*, Jorge Bernabé Sanjuán3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3369-3386, 2025, DOI:10.32604/cmes.2025.069225 - 30 September 2025

    Abstract Due to the continuous increase in global energy demand, photovoltaic solar energy generation and associated maintenance requirements have significantly expanded. One critical maintenance challenge in photovoltaic installations is detecting hot spots, localized overheating defects in solar cells that drastically reduce efficiency and can lead to permanent damage. Traditional methods for detecting these defects rely on manual inspections using thermal imaging, which are costly, labor-intensive, and impractical for large-scale installations. This research introduces an automated hybrid system based on two specialized convolutional neural networks deployed in a cascaded architecture. The first convolutional neural network efficiently detects More >

  • Open Access

    ARTICLE

    Heuristic Weight Initialization for Transfer Learning in Classification Problems

    Musulmon Lolaev1, Anand Paul2,*, Jeonghong Kim1

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 4155-4171, 2025, DOI:10.32604/cmc.2025.064758 - 23 September 2025

    Abstract Transfer learning is the predominant method for adapting pre-trained models on another task to new domains while preserving their internal architectures and augmenting them with requisite layers in Deep Neural Network models. Training intricate pre-trained models on a sizable dataset requires significant resources to fine-tune hyperparameters carefully. Most existing initialization methods mainly focus on gradient flow-related problems, such as gradient vanishing or exploding, or other existing approaches that require extra models that do not consider our setting, which is more practical. To address these problems, we suggest employing gradient-free heuristic methods to initialize the weights… More >

  • Open Access

    ARTICLE

    Enhancing Heart Sound Classification with Iterative Clustering and Silhouette Analysis: An Effective Preprocessing Selective Method to Diagnose Rare and Difficult Cardiovascular Cases

    Sami Alrabie#,*, Ahmed Barnawi#

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2481-2519, 2025, DOI:10.32604/cmes.2025.067977 - 31 August 2025

    Abstract In the effort to enhance cardiovascular diagnostics, deep learning-based heart sound classification presents a promising solution. This research introduces a novel preprocessing method: iterative k-means clustering combined with silhouette score analysis, aimed at downsampling. This approach ensures optimal cluster formation and improves data quality for deep learning models. The process involves applying k-means clustering to the dataset, calculating the average silhouette score for each cluster, and selecting the cluster with the highest score. We evaluated this method using 10-fold cross-validation across various transfer learning models from different families and architectures. The evaluation was conducted on… More >

  • Open Access

    ARTICLE

    A Hybrid CNN-Transformer Framework for Normal Blood Cell Classification: Towards Automated Hematological Analysis

    Osama M. Alshehri1, Ahmad Shaf2,*, Muhammad Irfan3,*, Mohammed M. Jalal4, Malik A. Altayar4, Mohammed H. Abu-Alghayth5, Humood Al Shmrany6, Tariq Ali7, Toufique A. Soomro8, Ali G. Alkhathami9

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1165-1196, 2025, DOI:10.32604/cmes.2025.067150 - 31 July 2025

    Abstract Background: Accurate classification of normal blood cells is a critical foundation for automated hematological analysis, including the detection of pathological conditions like leukemia. While convolutional neural networks (CNNs) excel in local feature extraction, their ability to capture global contextual relationships in complex cellular morphologies is limited. This study introduces a hybrid CNN-Transformer framework to enhance normal blood cell classification, laying the groundwork for future leukemia diagnostics. Methods: The proposed architecture integrates pre-trained CNNs (ResNet50, EfficientNetB3, InceptionV3, CustomCNN) with Vision Transformer (ViT) layers to combine local and global feature modeling. Four hybrid models were evaluated on… More >

  • Open Access

    ARTICLE

    Enhancing Fall Detection in Alzheimer’s Patients Using Unsupervised Domain Adaptation

    Nadhmi A. Gazem1, Sultan Noman Qasem2,3, Umair Naeem4, Shahid Latif5, Ibtehal Nafea6, Faisal Saeed7, Mujeeb Ur Rehman8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 407-427, 2025, DOI:10.32604/cmes.2025.066517 - 31 July 2025

    Abstract Falls are a leading cause of injury and morbidity among older adults, especially those with Alzheimer’s disease (AD), who face increased risks due to cognitive decline, gait instability, and impaired spatial awareness. While wearable sensor-based fall detection systems offer promising solutions, their effectiveness is often hindered by domain shifts resulting from variations in sensor placement, sampling frequencies, and discrepancies in dataset distributions. To address these challenges, this paper proposes a novel unsupervised domain adaptation (UDA) framework specifically designed for cross-dataset fall detection in Alzheimer’s disease (AD) patients, utilizing advanced transfer learning to enhance generalizability. The… More >

  • Open Access

    ARTICLE

    PNMT: Zero-Resource Machine Translation with Pivot-Based Feature Converter

    Lingfang Li1,2, Weijian Hu2, Mingxing Luo1,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5915-5935, 2025, DOI:10.32604/cmc.2025.064349 - 30 July 2025

    Abstract Neural machine translation (NMT) has been widely applied to high-resource language pairs, but its dependence on large-scale data results in poor performance in low-resource scenarios. In this paper, we propose a transfer-learning-based approach called shared space transfer for zero-resource NMT. Our method leverages a pivot pre-trained language model (PLM) to create a shared representation space, which is used in both auxiliary source→pivot (Ms2p) and pivot→target (Mp2t) translation models. Specifically, we exploit pivot PLM to initialize the Ms2p decoder and Mp2t encoder, while adopting a freezing strategy during the training process. We further propose a feature… More >

Displaying 11-20 on page 2 of 236. Per Page