Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (176)
  • Open Access

    ARTICLE

    Personality Trait Detection via Transfer Learning

    Bashar Alshouha1, Jesus Serrano-Guerrero1,*, Francisco Chiclana2, Francisco P. Romero1, Jose A. Olivas1

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1933-1956, 2024, DOI:10.32604/cmc.2023.046711

    Abstract Personality recognition plays a pivotal role when developing user-centric solutions such as recommender systems or decision support systems across various domains, including education, e-commerce, or human resources. Traditional machine learning techniques have been broadly employed for personality trait identification; nevertheless, the development of new technologies based on deep learning has led to new opportunities to improve their performance. This study focuses on the capabilities of pre-trained language models such as BERT, RoBERTa, ALBERT, ELECTRA, ERNIE, or XLNet, to deal with the task of personality recognition. These models are able to capture structural features from textual… More >

  • Open Access

    ARTICLE

    Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms

    Afnan M. Alhassan*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2207-2223, 2024, DOI:10.32604/cmc.2024.046427

    Abstract Breast Arterial Calcification (BAC) is a mammographic decision dissimilar to cancer and commonly observed in elderly women. Thus identifying BAC could provide an expense, and be inaccurate. Recently Deep Learning (DL) methods have been introduced for automatic BAC detection and quantification with increased accuracy. Previously, classification with deep learning had reached higher efficiency, but designing the structure of DL proved to be an extremely challenging task due to overfitting models. It also is not able to capture the patterns and irregularities presented in the images. To solve the overfitting problem, an optimal feature set has… More >

  • Open Access

    ARTICLE

    Mapping of Land Use and Land Cover (LULC) Using EuroSAT and Transfer Learning

    Suman Kunwar1,*, Jannatul Ferdush2

    Revue Internationale de Géomatique, Vol.33, pp. 1-13, 2024, DOI:10.32604/rig.2023.047627

    Abstract As the global population continues to expand, the demand for natural resources increases. Unfortunately, human activities account for 23% of greenhouse gas emissions. On a positive note, remote sensing technologies have emerged as a valuable tool in managing our environment. These technologies allow us to monitor land use, plan urban areas, and drive advancements in areas such as agriculture, climate change mitigation, disaster recovery, and environmental monitoring. Recent advances in Artificial Intelligence (AI), computer vision, and earth observation data have enabled unprecedented accuracy in land use mapping. By using transfer learning and fine-tuning with red-green-blue More > Graphic Abstract

    Mapping of Land Use and Land Cover (LULC) Using EuroSAT and Transfer Learning

  • Open Access

    ARTICLE

    Deep Learning-Based Digital Image Forgery Detection Using Transfer Learning

    Emad Ul Haq Qazi1,*, Tanveer Zia1, Muhammad Imran2, Muhammad Hamza Faheem1

    Intelligent Automation & Soft Computing, Vol.38, No.3, pp. 225-240, 2023, DOI:10.32604/iasc.2023.041181

    Abstract Deep learning is considered one of the most efficient and reliable methods through which the legitimacy of a digital image can be verified. In the current cyber world where deepfakes have shaken the global community, confirming the legitimacy of a digital image is of great importance. With the advancements made in deep learning techniques, now we can efficiently train and develop state-of-the-art digital image forensic models. The most traditional and widely used method by researchers is convolution neural networks (CNN) for verification of image authenticity but it consumes a considerable number of resources and requires… More >

  • Open Access

    ARTICLE

    Selective and Adaptive Incremental Transfer Learning with Multiple Datasets for Machine Fault Diagnosis

    Kwok Tai Chui1,*, Brij B. Gupta2,3,4,5,6,*, Varsha Arya7,8,9, Miguel Torres-Ruiz10

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1363-1379, 2024, DOI:10.32604/cmc.2023.046762

    Abstract The visions of Industry 4.0 and 5.0 have reinforced the industrial environment. They have also made artificial intelligence incorporated as a major facilitator. Diagnosing machine faults has become a solid foundation for automatically recognizing machine failure, and thus timely maintenance can ensure safe operations. Transfer learning is a promising solution that can enhance the machine fault diagnosis model by borrowing pre-trained knowledge from the source model and applying it to the target model, which typically involves two datasets. In response to the availability of multiple datasets, this paper proposes using selective and adaptive incremental transfer… More >

  • Open Access

    ARTICLE

    Data Fusion Architecture Empowered with Deep Learning for Breast Cancer Classification

    Sahar Arooj1, Muhammad Farhan Khan2, Tariq Shahzad3, Muhammad Adnan Khan4,5,6, Muhammad Umar Nasir7, Muhammad Zubair1, Atta-ur-Rahman8, Khmaies Ouahada3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2813-2831, 2023, DOI:10.32604/cmc.2023.043013

    Abstract Breast cancer (BC) is the most widespread tumor in females worldwide and is a severe public health issue. BC is the leading reason of death affecting females between the ages of 20 to 59 around the world. Early detection and therapy can help women receive effective treatment and, as a result, decrease the rate of breast cancer disease. The cancer tumor develops when cells grow improperly and attack the healthy tissue in the human body. Tumors are classified as benign or malignant, and the absence of cancer in the breast is considered normal. Deep learning,… More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on Deep Discriminative Adversarial Domain Adaptation Neural Networks

    Jinxi Guo1, Kai Chen1,2, Jiehui Liu1, Yuhao Ma2, Jie Wu2,*, Yaochun Wu2, Xiaofeng Xue3, Jianshen Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2619-2640, 2024, DOI:10.32604/cmes.2023.031360

    Abstract Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation of equipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasing attention and achieved some results. It might lead to insufficient performance for using transfer learning alone and cause misclassification of target samples for domain bias when building deep models to learn domain-invariant features. To address the above problems, a deep discriminative adversarial domain adaptation neural network for the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are… More >

  • Open Access

    ARTICLE

    Optimizing Deep Learning for Computer-Aided Diagnosis of Lung Diseases: An Automated Method Combining Evolutionary Algorithm, Transfer Learning, and Model Compression

    Hassen Louati1,2, Ali Louati3,*, Elham Kariri3, Slim Bechikh2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2519-2547, 2024, DOI:10.32604/cmes.2023.030806

    Abstract Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues, particularly in the field of lung disease diagnosis. One promising avenue involves the use of chest X-Rays, which are commonly utilized in radiology. To fully exploit their potential, researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems. However, constructing and compressing these systems presents a significant challenge, as it relies heavily on the expertise of data scientists. To tackle this issue, we propose an automated approach that utilizes an evolutionary algorithm (EA) to optimize the design and compression More >

  • Open Access

    ARTICLE

    Tool Wear State Recognition with Deep Transfer Learning Based on Spindle Vibration for Milling Process

    Qixin Lan1, Binqiang Chen1,*, Bin Yao1, Wangpeng He2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2825-2844, 2024, DOI:10.32604/cmes.2023.030378

    Abstract The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the tool will generate significant noise and vibration, negatively impacting the accuracy of the forming and the surface integrity of the workpiece. Hence, during the cutting process, it is imperative to continually monitor the tool wear state and promptly replace any heavily worn tools to guarantee the quality of the cutting. The conventional tool wear monitoring models, which are based on machine learning, are specifically built for the intended cutting conditions. However, these models require retraining when… More >

  • Open Access

    ARTICLE

    Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space

    Mudassir Khalil1, Muhammad Imran Sharif2,*, Ahmed Naeem3, Muhammad Umar Chaudhry1, Hafiz Tayyab Rauf4,*, Adham E. Ragab5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2031-2047, 2023, DOI:10.32604/cmc.2023.043687

    Abstract Early detection of brain tumors is critical for effective treatment planning. Identifying tumors in their nascent stages can significantly enhance the chances of patient survival. While there are various types of brain tumors, each with unique characteristics and treatment protocols, tumors are often minuscule during their initial stages, making manual diagnosis challenging, time-consuming, and potentially ambiguous. Current techniques predominantly used in hospitals involve manual detection via MRI scans, which can be costly, error-prone, and time-intensive. An automated system for detecting brain tumors could be pivotal in identifying the disease in its earliest phases. This research… More >

Displaying 11-20 on page 2 of 176. Per Page