Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (132)
  • Open Access

    ARTICLE

    THERMAL MANAGEMENT OF DATA CENTERS UNDER STEADY AND TRANSIENT CONDITIONS

    Yogesh Jaluriaa,*, Arvindh Sundera, Jingru Z. Bennerb

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-12, 2020, DOI:10.5098/hmt.15.12

    Abstract Data centers are of crucial importance today in the storage and retrieval of large amounts of data. Most organizations and firms, ranging from banks and online retailers to government departments and internet companies, use data centers to store information that can be recovered efficiently and rapidly. As the deployment of data centers has increased, along with their capacity for data storage, the demands on thermal management have also increased. It is necessary to remove the energy dissipated by the electronic circuitry since the temperature of the components must not rise beyond acceptable levels that could damage them or affect their… More >

  • Open Access

    ARTICLE

    COMPARISON OF TRANSIENT CHARACTERISTICS OF A CENTRIFUGAL PUMP DURING FORWARD AND REVERSE STOPPING PERIODS

    Y. L. Zhanga , H. B. Linb, S. P. Lib,*, J. J. Xiaoa, L. Zhangc

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-6, 2022, DOI:10.5098/hmt.18.47

    Abstract Centrifugal pumps need to be stopped in the case of closing valve sometimes due to some specific application requirements. This paper presents a numerical simulation of the unsteady flow inside a low specific speed centrifugal pump during closed-valve forward and reverse stopping process. The study results show that the average internal pressure gradually decreases during stopping periods. At the same blade radius, the pressure on working surface is significantly higher than the suction surface. The pressure gradually increases from the impeller inlet to the outlet. The simulation fully shows the transient flow characteristics inside the centrifugal pump during forward and… More >

  • Open Access

    ARTICLE

    SELF-COUPLING NUMERICAL CALCULATION OF CENTRIFUGAL PUMP STARTUP PROCESS

    L. Cheng, Y. L. Zhang

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-6, 2022, DOI:10.5098/hmt.18.26

    Abstract To obtain the transient characteristics of a centrifugal pump during a rapid startup process accurately, a circulating piping system, including the pump, is established. A full three-dimensional unsteady incompressible viscous flow of a low-specific speed centrifugal pump during rapid startup is numerically simulated using the finite volume method, RNG k-ε turbulence model, sliding grid technology, dynamic grid technology, and userdefined function. Results show that the effect of dynamic and static interference becomes remarkably evident with the increase in speed in the starting process. The effect of dynamic and static interference makes the flow rate show small fluctuation characteristics, and the… More >

  • Open Access

    ARTICLE

    THERMAL-HYDRAULIC ANALYSIS OF TRANSIENT CONJUGATE HEATING BETWEEN HEMI-SPHERICAL BODY AND AIR

    Farhan Lafta Rashida , Abbas Fadhil Khalafa, Ahmed Kadhim Husseinb, Mohamed Bechir Ben Hamida c,d,e, Bagh Alif, Obai Younisg,*

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-6, 2022, DOI:10.5098/hmt.19.21

    Abstract Convection and conduction in a fluid flow and a rigid body in contact with each other often occur in engineering situations, resulting in unsteady conjugate heat transfer (CHT). Although the analytical solutions to the separate conduction and convection issues are surprisingly straightforward, the combined conjugate heat transfer problem is substantially more complex to solve. This study investigates the CHT of a fluid (air) passing through an unbounded hemisphere. The hemisphere produces heat at a predictable and regular pace. The governing equations are solved using a finite volume system (FVS) using ANSYS Fluent V.16.0, with axisymmetric, no normal convection, and stable… More >

  • Open Access

    ARTICLE

    Improved Transient Search Optimization with Machine Learning Based Behavior Recognition on Body Sensor Data

    Baraa Wasfi Salim1, Bzar Khidir Hussan2, Zainab Salih Ageed3, Subhi R. M. Zeebaree4,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4593-4609, 2023, DOI:10.32604/cmc.2023.037514

    Abstract Recently, human healthcare from body sensor data has gained considerable interest from a wide variety of human-computer communication and pattern analysis research owing to their real-time applications namely smart healthcare systems. Even though there are various forms of utilizing distributed sensors to monitor the behavior of people and vital signs, physical human action recognition (HAR) through body sensors gives useful information about the lifestyle and functionality of an individual. This article concentrates on the design of an Improved Transient Search Optimization with Machine Learning based Behavior Recognition (ITSOML-BR) technique using body sensor data. The presented ITSOML-BR technique collects data from… More >

  • Open Access

    ARTICLE

    Optimal Allocation of STATCOM to Enhance Transient Stability Using Imperialist Competitive Algorithm

    Ayman Amer1, Firas M. Makahleh2, Jafar Ababneh3, Hani Attar4, Ahmed Amin Ahmed Solyman5, Mehrdad Ahmadi Kamarposhti6,*, Phatiphat Thounthong7

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3425-3446, 2023, DOI:10.32604/iasc.2023.034854

    Abstract With the daily expansion of global energy consumption, developing the power grids is of uttermost importance. However, building a new transmission line is costly and time-consuming, so utilizing the same lines with possible higher transmission capacity is very cost-effective. In this regard, to increase the capacity of the transmission lines, the flexible alternating current transmission system (FACTS) has been widely used in power grids in recent years by industrialized countries. One of the essential topics in electrical power systems is the reactive power compensation, and the FACTS plays a significant role in controlling the reactive power current in the power… More >

  • Open Access

    ARTICLE

    STPGTN–A Multi-Branch Parameters Identification Method Considering Spatial Constraints and Transient Measurement Data

    Shuai Zhang, Liguo Weng*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2635-2654, 2023, DOI:10.32604/cmes.2023.025405

    Abstract Transmission line (TL) Parameter Identification (PI) method plays an essential role in the transmission system. The existing PI methods usually have two limitations: (1) These methods only model for single TL, and can not consider the topology connection of multiple branches for simultaneous identification. (2) Transient bad data is ignored by methods, and the random selection of terminal section data may cause the distortion of PI and have serious consequences. Therefore, a multi-task PI model considering multiple TLs’ spatial constraints and massive electrical section data is proposed in this paper. The Graph Attention Network module is used to draw a… More > Graphic Abstract

    STPGTN–A Multi-Branch Parameters Identification Method Considering Spatial Constraints and Transient Measurement Data

  • Open Access

    ARTICLE

    IoT-Driven Optimal Lightweight RetinaNet-Based Object Detection for Visually Impaired People

    Mesfer Alduhayyem1,*, Mrim M. Alnfiai2,3, Nabil Almalki4, Fahd N. Al-Wesabi5, Anwer Mustafa Hilal6, Manar Ahmed Hamza6

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 475-489, 2023, DOI:10.32604/csse.2023.034067

    Abstract Visual impairment is one of the major problems among people of all age groups across the globe. Visually Impaired Persons (VIPs) require help from others to carry out their day-to-day tasks. Since they experience several problems in their daily lives, technical intervention can help them resolve the challenges. In this background, an automatic object detection tool is the need of the hour to empower VIPs with safe navigation. The recent advances in the Internet of Things (IoT) and Deep Learning (DL) techniques make it possible. The current study proposes IoT-assisted Transient Search Optimization with a Lightweight RetinaNet-based object detection (TSOLWR-ODVIP)… More >

  • Open Access

    ARTICLE

    A Novel Localized Meshless Method for Solving Transient Heat Conduction Problems in Complicated Domains

    Chengxin Zhang1, Chao Wang1, Shouhai Chen2,*, Fajie Wang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2407-2424, 2023, DOI:10.32604/cmes.2023.024884

    Abstract This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method (LKM) with the dual reciprocity method (DRM). Firstly, the temporal derivative is discretized by a finite difference scheme, and thus the governing equation of transient heat transfer is transformed into a non-homogeneous modified Helmholtz equation. Secondly, the solution of the non-homogeneous modified Helmholtz equation is decomposed into a particular solution and a homogeneous solution. And then, the DRM and LKM are used to solve the particular solution of the non-homogeneous equation and the homogeneous solution of the modified Helmholtz equation, respectively.… More >

  • Open Access

    ARTICLE

    Efficient Authentication System Using Wavelet Embeddings of Otoacoustic Emission Signals

    V. Harshini1, T. Dhanwin1, A. Shahina1,*, N. Safiyyah2, A. Nayeemulla Khan2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1851-1867, 2023, DOI:10.32604/csse.2023.028136

    Abstract Biometrics, which has become integrated with our daily lives, could fall prey to falsification attacks, leading to security concerns. In our paper, we use Transient Evoked Otoacoustic Emissions (TEOAE) that are generated by the human cochlea in response to an external sound stimulus, as a biometric modality. TEOAE are robust to falsification attacks, as the uniqueness of an individual’s inner ear cannot be impersonated. In this study, we use both the raw 1D TEOAE signals, as well as the 2D time-frequency representation of the signal using Continuous Wavelet Transform (CWT). We use 1D and 2D Convolutional Neural Networks (CNN) for… More >

Displaying 21-30 on page 3 of 132. Per Page