Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (41)
  • Open Access

    ARTICLE

    Artificial Neural Network (ANN) Approach for Predicting Concrete Compressive Strength by SonReb

    Mario Bonagura, Lucio Nobile*

    Structural Durability & Health Monitoring, Vol.15, No.2, pp. 125-137, 2021, DOI:10.32604/sdhm.2021.015644 - 03 June 2021

    Abstract The compressive strength of concrete is one of most important mechanical parameters in the performance assessment of existing reinforced concrete structures. According to various international codes, core samples are drilled and tested to obtain the concrete compressive strengths. Non-destructive testing is an important alternative when destructive testing is not feasible without damaging the structure. The commonly used non-destructive testing (NDT) methods to estimate the in-situ values include the Rebound hammer test and the Ultrasonic Pulse Velocity test. The poor reliability of these tests due to different aspects could be partially contrasted by using both methods together,… More >

  • Open Access

    ARTICLE

    Detection of Cracks in Aerospace Turbine Disks Using an Ultrasonic Phased Array C-scan Device

    Qian Xu1,*, Haitao Wang1,2, Zhenhua Chen3, Zhigang Huang3, Pan Hu1

    Structural Durability & Health Monitoring, Vol.15, No.1, pp. 39-52, 2021, DOI:10.32604/sdhm.2021.014815 - 22 March 2021

    Abstract Crack detection in an aerospace turbine disk is essential for aircraft- quality detection. With the unique circular stepped structure and superalloy material properties of aerospace turbine disk, it is difficult for the traditional ultrasonic testing method to perform efficient and accurate testing. In this study, ultrasound phased array detection technology was applied to the non-destructive testing of aviation turbine disks: (i) A phased array ultrasonic c-scan device for detecting aerospace turbine disk cracks (PAUDA) was developed which consists of phased array ultrasonic, transducers, a computer, a displacement encoder, and a rotating scanner; (ii) The influence… More >

  • Open Access

    ARTICLE

    Extraction Hydrolysates from Larimichthys Polyactis Swim Bladder Using Enzymatic Hydrolysis

    Ling Pan1 , Yubo Tao2,*, Peng Li1,2,*

    Journal of Renewable Materials, Vol.9, No.6, pp. 1099-1109, 2021, DOI:10.32604/jrm.2021.014683 - 11 March 2021

    Abstract As a kind of biopolymer, hydrolysates of fish swim bladder, safer than those of land mammals, are widely used in food, cosmetics as well as pharmaceutical and biomedical fields for their biocompatibility, biodegradability, and weak antigenicity. To enhance hydrolysate production, in this paper, the papain and alcalase hydrolysis processes of larimichthys polyactis swim bladder were optimized with orthogonal experiments. With 89.5% hydrolysate yield, the optimal processing conditions for alcalase were solid-liquid ratio of 1:30, enzyme concentration of 0.7%, and extraction time of 6 h. As for papain, under the optimal processing conditions: solid-liquid ratio of… More >

  • Open Access

    ARTICLE

    Study of Optical, Electrical and Acoustical Properties of CuSO4 Doped Polyvinyl Pyrrolidone (PVP) based Polymer Solutions

    RAJEEV KUMAR

    Journal of Polymer Materials, Vol.37, No.3-4, pp. 131-142, 2020, DOI:10.32381/JPM.2020.37.3-4.2

    Abstract The optical, electrical and acoustical properties of a polymer solution based on polyvinyl pyrrolidone (PVP) doped with different concentration of cupric sulphate (CuSO4 ) were studied.UVVIS spectroscopy results reflected that absorption increases in asymmetric manner and the absorption peak showed red shift with increasing Cu ions concentration. The optical band gap (direct and indirect) was found to decrease with increase in Cu ions concentration in the polymer due to increase in the density of localized states in the band-gap.The value of Urbach energy is also evaluated from the transmission spectra and the activation energies are also More >

  • Open Access

    ARTICLE

    Comparison of Fuzzy Synthetic Evaluation and Field Measurement of Internal Defects in Assembled Concrete Detected by Ultrasonic Waves

    Hua Yan1,2,3,*, Bo Song1,3, Mansheng Wang4

    Structural Durability & Health Monitoring, Vol.14, No.3, pp. 265-282, 2020, DOI:10.32604/sdhm.2020.06403 - 14 September 2020

    Abstract Analyze and compare the basic principles of ultrasonic detection of voids in concrete, choose ZBL-U520/510 non-metallic ultrasonic detector, and use the opposite detection method to test the void size in the joints of prefabricated concrete structures. The results show that: ultrasonic method by testing the waveform, sound, and speed of sound analysis can effectively determine the position of the defect, and through the conversion formula can estimate the void size. Ultrasonic parameters are used to distinguish the internal defects of Assembly concrete. Sometimes there are different results with different parameters. It is difficult for engineers… More >

  • Open Access

    ARTICLE

    Design and Implementation of an Intelligent Ultrasonic Cleaning Device

    Fecir Duran1, Mustafa Teke2

    Intelligent Automation & Soft Computing, Vol.25, No.3, pp. 441-449, 2019, DOI:10.31209/2018.11006161

    Abstract Ultrasonic cleaners are devices that perform ultrasonic cleaning by using ultrasonic converters. Ultrasonic cleaners have been employed to clean dirty and rusty materials such as optic, jewelers, automotive and dental prosthesis sectors. Due to non-identified correctly cleaning time, cavitation erosion has been occurred at some materials, which desire for cleaning. In this study, an intelligent cleaning device that runs autonomously identified cleaning time, saves energy, and makes the cleaning process safely has been designed and implemented. An ultrasonic cleaning time has been adjusted automatically by monitoring of turbidity and conductivity values of liquid that is More >

  • Open Access

    ARTICLE

    Ultrasonic Wireless Communication Through Metal Barriers

    Jianing Zhang1,2, Ziying Yu1, Hengxu Yang1,2, Ming Wu1, Jun Yang1,2,*

    Sound & Vibration, Vol.53, No.2, pp. 2-15, 2019, DOI:10.32604/sv.2019.03783

    Abstract Ultrasound can be used as a carrier to realize wireless communication to and from a metal-enclosed space, which has the characteristics such as immunity to the electromagnetic shielding effect and non-destructive penetration of metal obstacles. This paper firstly reviews the previous studies in the field of ultrasonic wireless communication through metal barriers, and summarizes their achievements and the existing problems. Secondly, an overview of the research methods involved in studying the characteristic of acoustic-electric channel is presented, and the principles are introduced for the actual measurement method, equivalent circuit method, ABCD parameter method, finite element More >

  • Open Access

    ARTICLE

    Development of an Ultrasonic Nomogram for Preoperative Prediction of Castleman Disease Pathological Type

    Xinfang Wang1, Lianqing Hong2, Xi Wu3, Jia He3, Ting Wang3,4,*, Hongbo Li5, Shaoling Liu6

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 141-154, 2019, DOI:10.32604/cmc.2019.06030

    Abstract An ultrasonic nomogram was developed for preoperative prediction of Castleman disease (CD) pathological type (hyaline vascular (HV) or plasma cell (PC) variant) to improve the understanding and diagnostic accuracy of ultrasound for this disease. Fifty cases of CD confirmed by pathology were gathered from January 2012 to October 2018 from three hospitals. A grayscale ultrasound image of each patient was collected and processed. First, the region of interest of each gray ultrasound image was manually segmented using a process that was guided and calibrated by radiologists who have been engaged in imaging diagnosis for more… More >

  • Open Access

    ARTICLE

    Simulation Study on the Acoustic Field from Linear Phased Array Ultrasonic Transducer for Engine Cylinder Testing

    Xiaoxia Yang1, Shili Chen1, Fang Sun1, Shijiu Jin1, Wenshuang Chang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.6, pp. 487-500, 2013, DOI:10.3970/cmes.2013.090.487

    Abstract Ultrasonic phased array inspection technology is widely used in nondestructive evaluation (NDE) applications and it has been proved to be an effective method for flaw detections in industry. In our study, this nondestructive evaluation method is proposed to detect the corrosion defects on engine cylinders. In order to demonstrate its feasibility, it is necessary to study the characteristics of the acoustic field produced by a linear phased array ultrasonic transducer in the engine cylinders. In this paper, according to multi-Gaussian beam model and ray acoustics theory, we derive the expression of the acoustic field from More >

  • Open Access

    ARTICLE

    Damage Monitoring of Ultrasonically Welded Aluminum / CFRP-Joints during Cyclic Loading via Electrical Resistance Measurements

    F. Balle1, S. Huxhold1, G. Wagner1, D. Eifler1

    Structural Durability & Health Monitoring, Vol.8, No.4, pp. 359-370, 2012, DOI:10.32604/sdhm.2012.008.359

    Abstract Aluminum alloys and carbon fiber reinforced polymers (CFRP) are two important materials for lightweight design and the combination of these dissimilar materials becomes increasingly important. Recent investigations have shown that ultrasonic metal welding is a well suited process to realize aluminum/CFRP-joints.The ultrasonic shear oscillation parallel to the welding zone with a simultaneous welding force perpendicular to the aluminum/CFRP-sheets melts the polymer matrix and squeezes the polymer matrix out of the welding zone. This allows a direct contact between the carbon fibers and the aluminum. Beside monotonic properties the cyclic deformation behavior of these ultrasonically welded More >

Displaying 21-30 on page 3 of 41. Per Page