Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (180)
  • Open Access

    ARTICLE

    Variable Viscosity and Density Biofilm Simulations using an Immersed Boundary Method, Part I: Numerical Scheme and Convergence Results

    Jason F. Hammond1, Elizabeth J. Stewart2, John G. Younger3, Michael J.Solomon2, David M. Bortz4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.3, pp. 295-340, 2014, DOI:10.32604/cmes.2014.098.295

    Abstract The overall goal of this work is to develop a numerical simulation which correctly describes a bacterial biofilm fluid-structure interaction and separation process. In this, the first of a two-part effort, we fully develop a convergent scheme and provide numerical evidence for the method order as well as a full 3D separation simulation. We use an immersed boundary-based method (IBM) to model and simulate a biofilm with density and viscosity values different from than that of the surrounding fluid. The simulation also includes breakable springs connecting the bacteria in the biofilm which allows the inclusion of erosion and detachment into… More >

  • Open Access

    ARTICLE

    Numerical Solution for the Variable Order Time Fractional Diffusion Equation with Bernstein Polynomials

    Yiming Chen1, Liqing Liu1, Xuan Li1 and Yannan Sun1

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.1, pp. 81-100, 2014, DOI:10.3970/cmes.2014.097.081

    Abstract In this paper, Bernstein polynomials method is proposed for the numerical solution of a class of variable order time fractional diffusion equation. Coimbra variable order fractional operator is adopted, as it is the most appropriate and desirable definition for physical modeling. The Coimbra variable order fractional operator can also be regarded as a Caputo-type definition. The main characteristic behind this approach in this paper is that we derive two kinds of operational matrixes of Bernstein polynomials. With the operational matrixes, the equation is transformed into the products of several dependent matrixes which can also be viewed as the system of… More >

  • Open Access

    ARTICLE

    Legendre Polynomials Method for Solving a Class of Variable Order Fractional Differential Equation

    Lifeng Wang1, Yunpeng Ma1,2, Yongqiang Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.2, pp. 97-111, 2014, DOI:10.3970/cmes.2014.101.097

    Abstract In this paper, a numerical method based on the Legendre polynomials is presented for a class of variable order fractional differential equation. We adopt the Coimbra variable order fractional operator, which can be viewed as a Caputo-type definition. Three different kinds of operational matrixes with Legendre polynomials are derived. A truncated the Legendre polynomials series together with the products of several dependent matrixes are utilized to reduce the variable order fractional differential equation to a system of algebraic equations. The solution of this system gives the approximation solution for the truncated limited n. An error analysis technique is also given.… More >

  • Open Access

    ARTICLE

    Operational Matrix Method for Solving Variable Order Fractional Integro-differential Equations

    Mingxu Yi1, Jun Huang1, Lifeng Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.5, pp. 361-377, 2013, DOI:10.3970/cmes.2013.096.361

    Abstract In this paper, operational matrix method based upon the Bernstein polynomials is proposed to solve the variable order fractional integro-differential equations in the Caputo derivative sense. We derive the Bernstein polynomials operational matrix of fractional order integration and introduce the product operational matrix of Bernstein polynomials. A truncated the Bernstein polynomials series together with the polynomials operational matrix are utilized to reduce the variable order fractional integro-differential equations to a system of algebraic equations. Only a small number of Bernstein polynomials are needed to obtain a satisfactory result. Some examples are included to demonstrate the validity and applicability of the… More >

  • Open Access

    ARTICLE

    Universal Reliability Method for Structural Models with Both Random and Fuzzy Variables

    Zichun Yang1,2,3, Kunfeng Li1,4, Qi Cai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.2, pp. 143-171, 2013, DOI:10.3970/cmes.2013.095.143

    Abstract The conventional probabilistic reliability model for structures is based on the “probability assumption” and “binary-state assumption”. These assumptions are often offset the reality of practical engineering and lead to a wrong conclusion. In fact, besides randomness, fuzziness which is different from randomness in nature is also a prevalent uncertainty factor and plays an important role in structural reliability assessment. In this paper, a novel structural reliability model with random variables and fuzzy variables is established by using the fuzzy set theory, possibility theory and probability measure for fuzzy events, based on the “mixed probability and possibility assumption” and “fuzzy state… More >

  • Open Access

    ARTICLE

    The Second Kind Chebyshev Wavelet Method for Fractional Differential Equations with Variable Coefficients

    Baofeng Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.3, pp. 187-202, 2013, DOI:10.3970/cmes.2013.093.187

    Abstract In this article, the second kind Chebyshev wavelet method is presented for solving a class of multi-order fractional differential equations (FDEs) with variable coefficients. We first construct the second kind Chebyshev wavelet, prove its convergence and then derive the operational matrix of fractional integration of the second kind Chebyshev wavelet. The operational matrix of fractional integration is utilized to reduce the fractional differential equations to a system of algebraic equations. In addition, illustrative examples are presented to demonstrate the efficiency and accuracy of the proposed method. More >

  • Open Access

    ARTICLE

    Numerical Solution of Space-Time Fractional Convection-Diffusion Equations with Variable Coefficients Using Haar Wavelets

    Jinxia Wei1, Yiming Chen1, Baofeng Li2, Mingxu Yi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.6, pp. 481-495, 2012, DOI:10.3970/cmes.2012.089.481

    Abstract In this paper, we present a computational method for solving a class of space-time fractional convection-diffusion equations with variable coefficients which is based on the Haar wavelets operational matrix of fractional order differentiation. Haar wavelets method is used because its computation is sample as it converts the original problem into Sylvester equation. Error analysis is given that shows efficiency of the method. Finally, a numerical example shows the implementation and accuracy of the approach. More >

  • Open Access

    ARTICLE

    Applications of Parameter-Expanding Method to Nonlinear Oscillators in which the Restoring Force is Inversely Proportional to the Dependent Variable or in Form of Rational Function of Dependent Variable

    Canan Köroğlu1, Turgut Öziş2

    CMES-Computer Modeling in Engineering & Sciences, Vol.75, No.3&4, pp. 223-234, 2011, DOI:10.3970/cmes.2011.075.223

    Abstract He's parameter-expanding method with an adjustment of restoring forces in terms of Chebyshev's series is used to construct approximate frequency-amplitude relations for a conservative nonlinear singular oscillator in which the restoring force is inversely proportional to the dependent variable or in form of rational function of dependant variable. The procedure is used to solve the nonlinear differential equation approximately. The approximate frequency obtained using this procedure is more accurate than those obtained using other approximate methods and the discrepancy between the approximate frequency and the exact one negligible. More >

  • Open Access

    ARTICLE

    Fuzzy Optimization of Multivariable Fuzzy Functions

    Şahin Emrah Amrahov1, Iman N.Askerzade1

    CMES-Computer Modeling in Engineering & Sciences, Vol.70, No.1, pp. 1-10, 2010, DOI:10.3970/cmes.2010.070.001

    Abstract In this paper we define multivariable fuzzy functions (MFF) and corresponding multivariable crisp functions (MCF). Then we give a definition for the maximum value of MFF, which in some cases coincides with the maximum value in Pareto sense. We introduce generalized maximizing and minimizing sets in order to determine the maximum values of MFF. By equating membership functions of a given fuzzy domain set and the corresponding maximizing set, we obtain a curve of equal possibilities. Then we use the method of Lagrange multipliers to solve the resulting nonlinear optimization problem when the membership functions are differentiable. We finally present… More >

  • Open Access

    ARTICLE

    A Green's Function for Variable Density Elastodynamics under Plane Strain Conditions by Hormander's Method

    George D. Manolis1, Stavros Pavlou2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.3, pp. 399-416, 2002, DOI:10.3970/cmes.2002.003.399

    Abstract A free-space Green's function for problems involving time-harmonic elastic waves in variable density materials under plane strain conditions is developed herein by means of Hormander's method in the context of matrix algebra formalism. The challenge when solving problems involving inhomogenous media is that the coefficients appearing in the governing equations of motion are position-dependent. Furthermore, an additional difficulty stems from the fact that these governing equations are vectorial, which implies that coordinate transformation techniques that have been successful with scalar waves can no longer be used. Thus, the present work aims at establishing the necessary background that will allow for… More >

Displaying 151-160 on page 16 of 180. Per Page