Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (180)
  • Open Access

    ABSTRACT

    Multiscale simulation of crack propagation using variable-node finite elements

    Dongwoo Sohn1, Jae Hyuk Lim2, Young-Sam Cho3, Seyoung Im1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.2, pp. 53-54, 2009, DOI:10.3970/icces.2009.010.053

    Abstract A novel multiscale finite element (FE) scheme is proposed for a simulation of crack propagation in the heterogeneous media including randomly distributed microstructures, such as voids, rigid fibers. A fine scale mesh is employed to capture the singularity of the crack tip and the effect of microstructures at the vicinity of crack tip. On the other hand, a region far from the crack tip is composed of coarse scale mesh, wherein the effect of the microstructures is averaged through the homogenization theory. An interface between the fine scale mesh and the coarse scale mesh is connected by variable-node finite elements… More >

  • Open Access

    ARTICLE

    Dynamic Response Solution of Multi-Layered Pavement Structure Under FWD Load Appling the Precise Integration Algorithm

    Zejun Han1, Hongyuan Fang2,3,4,*, Juan Zhang5, Fuming Wang2,3,4

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 853-871, 2019, DOI:10.32604/cmc.2019.03839

    Abstract The pavement layered structures are composed of surface layer, road base and multi-layered soil foundation. They can be undermined over time by repeated vehicle loads. In this study, a hybrid numerical method which can evaluate the displacement responses of pavement structures under dynamic falling weight deflectometer (FWD) loads. The proposed method consists of two parts: (a) the dynamic stiffness matrices of the points at the surface in the frequency domain which is based on the domain-transformation and dual vector form equation, and (b) interpolates the dynamic stiffness matrices by a continues rational function of frequency. The mixed variables formulation (MVF)… More >

  • Open Access

    ARTICLE

    Influence of Geometric Design Variable and Bone Quality on Stress Distribution for Zirconia Dental Implants-A 3D Finite Element Analysis

    Duraisamy Velmurugan1, Masilamany Santha Alphin1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.2, pp. 125-141, 2018, DOI:10.31614/cmes.2018.01817

    Abstract This study aims to investigate the effects of variable thread pitch on stress distribution in bones of different bone qualities under two different loading conditions (Vertical, and Horizontal) for a Zirconia dental implant. For this purpose, a three dimensional finite element model of the mandibular premolar section and three single threaded implants of 0.8 mm, 1.6 mm, 2.4 mm pitch was designed. Finite element analysis software was used to develop the model and three different bone qualities (Type II, Type III, and Type IV) were prepared. A vertical load of 200 N, and a horizontal load of 100 N was… More >

  • Open Access

    ARTICLE

    Three-Variable Shifted Jacobi Polynomials Approach for Numerically Solving Three-Dimensional Multi-Term Fractional-Order PDEs with Variable Coefficients

    Jiaquan Xie1,3,*, Fuqiang Zhao1,3, Zhibin Yao1,3, Jun Zhang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.1, pp. 67-84, 2018, DOI:10.3970/cmes.2018.115.067

    Abstract In this paper, the three-variable shifted Jacobi operational matrix of fractional derivatives is used together with the collocation method for numerical solution of three-dimensional multi-term fractional-order PDEs with variable coefficients. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem. The approximate solutions of nonlinear fractional PDEs with variable coefficients thus obtained by three-variable shifted Jacobi polynomials are compared with the exact solutions. Furthermore some theorems and lemmas are introduced to verify the convergence results of our algorithm. Lastly, several numerical examples are presented… More >

  • Open Access

    ARTICLE

    MultivariableWavelet Finite Element for Plane Truss Analysis

    Xingwu Zhang1, Jixuan Liu2, Xuefeng Chen1,3, Zhibo Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.5, pp. 405-425, 2015, DOI:10.3970/cmes.2015.109.405

    Abstract Plane truss is widely used in mechanical engineering, building engineering and the aerospace engineering et al.. The precisely analysis of plane truss is very important for structural design and damage detection. Based on the generalized variational principle and B spline wavelet on the interval (BSWI), the multivariable wavelet finite element for plane truss is constructed. First, the wavelet axial rod element and the multivariable wavelet Euler beam element are constructed. Then the multivariable plane truss element can be obtained by combining these two elements together. Comparing with the traditional method, the generalized displacement and stress are treated as independent variables… More >

  • Open Access

    ARTICLE

    A New Hybrid Uncertain Analysis Method and its Application to Acoustic Field with Random and Interval Parameters

    Hui Yin1, Dejie Yu1,2, Shengwen Yin1, Baizhan Xia1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.3, pp. 221-246, 2015, DOI:10.3970/cmes.2015.109.221

    Abstract This paper presents a new hybrid Chebyshev-perturbation method (HCPM) for the prediction of acoustic field with random and interval parameters. In HCPM, the perturbation method based on the first-order Taylor series that accounts for the random uncertainty is organically integrated with the first-order Chebyshev polynomials that deal with the interval uncertainty; specifically, a random interval function is firstly expanded with the first-order Taylor series by treating the interval variables as constants, and the expressions of the expectation and variance can be obtained by using the random moment method; then the expectation and variance of the function are approximated by using… More >

  • Open Access

    ARTICLE

    Differing Mapping using Ensemble of Metamodels for Global Variable-fidelity Metamodeling

    Qi Zhou1, Xinyu Shao1, Ping Jiang1,2, Longchao Cao1, Hui Zhou1, Leshi Shu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.5, pp. 323-355, 2015, DOI:10.3970/cmes.2015.106.323

    Abstract Computational simulation models with different fidelity have been widely used in complex systems design. However, running the most accurate simulation models tends to be very time-consuming and can therefore only be used sporadically, while incorporating less accurate, inexpensive models into the design process may result in inaccurate design alternatives. To make a trade-off between high accuracy and low expense, variable fidelity (VF) metamodeling approaches that aim to integrate information from both low fidelity (LF) and high-fidelity (HF) models have gained increasing popularity. In this paper, a Difference Mapping Framework using Ensemble of Metamodels (DMF-EM) for global VF metamodeling is proposed.… More >

  • Open Access

    ARTICLE

    The Selective Control Feature for Physically Accurate Solutions of All Variables and Application in First Order Linear Transient Hyperbolic Systems

    S. Masuri1, K. K. Tamma2

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.3, pp. 147-168, 2015, DOI:10.3970/cmes.2015.106.147

    Abstract The objective in this paper is to extend the previously developed twoparameter GS4-1 (Generalized Single System Single Solve for 1st order transient systems) computational framework from parabolic to hyperbolic type of applications pertaining to first order linear transient systems. In particular, attention is paid to the selective control feature inherit in the framework, which is the new feature that enables different amounts of high frequency damping for the primary variable and its time derivative, allowing for physically accurate solutions of all variables in the system. This is in contrast to having only limited, often indiscriminate, control of the high frequency… More >

  • Open Access

    ARTICLE

    Numerical Study for a Class of Variable Order Fractional Integral-differential Equation in Terms of Bernstein Polynomials

    Jinsheng Wang1, Liqing Liu2, Yiming Chen2, Lechun Liu2, Dayan Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.1, pp. 69-85, 2015, DOI:10.3970/cmes.2015.104.069

    Abstract The aim of this paper is to seek the numerical solution of a class of variable order fractional integral-differential equation in terms of Bernstein polynomials. The fractional derivative is described in the Caputo sense. Four kinds of operational matrixes of Bernstein polynomials are introduced and are utilized to reduce the initial equation to the solution of algebraic equations after dispersing the variable. By solving the algebraic equations, the numerical solutions are acquired. The method in general is easy to implement and yields good results. Numerical examples are provided to demonstrate the validity and applicability of the method. More >

  • Open Access

    ARTICLE

    A Novel Semi-Analytic Meshless Method for Solving Two- and Three-Dimensional Elliptic Equations of General Form with Variable Coefficients in Irregular Domains

    S.Yu. Reutskiy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.4, pp. 327-349, 2014, DOI:10.3970/cmes.2014.099.327

    Abstract The paper presents a new meshless numerical method for solving 2D and 3D boundary value problems (BVPs) with elliptic PDEs of general form. The coefficients of the PDEs including the main operator part are spatially dependent functions. The key idea of the method is the use of the basis functions which satisfy the homogeneous boundary conditions of the problem. This allows us to seek an approximate solution in the form which satisfies the boundary conditions of the initial problem with any choice of the free parameters. As a result we separate approximation of the boundary conditions and approximation of the… More >

Displaying 141-150 on page 15 of 180. Per Page