Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (180)
  • Open Access

    ARTICLE

    Numerical Analysis of Flow-Induced Vibration and Noise Generation in a Variable Cross-Section Channel

    Youhao Wang1, Chuntian Zhe1, Chang Guo2, Jinpeng Li3, Jinheng Li3, Shen Cheng2, Zitian Wu1, Suoying He1, Ming Gao1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 2965-2980, 2023, DOI:10.32604/fdmp.2023.029292

    Abstract Flow channels with a variable cross-section are important components of piping system and are widely used in various fields of engineering. Using a finite element method and modal analysis theory, flow-induced noise, mode shapes, and structure-borne noise in such systems are investigated in this study. The results demonstrate that the maximum displacement and equivalent stress are located in the part with variable cross-sectional area. The average excitation force on the flow channel wall increases with the flow velocity. The maximum excitation force occurs in the range of 0–20 Hz, and then it decreases gradually in the range of 20–1000 Hz.… More >

  • Open Access

    ARTICLE

    A Stroke-Limitation AMD Control System with Variable Gain and Limited Area for High-Rise Buildings

    Zuo-Hua Li1, Qing-Gui Wu1,*, Jun Teng1,*, Chao-Jun Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 865-884, 2024, DOI:10.32604/cmes.2023.029927

    Abstract Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety. An active mass damper (AMD) with stroke limitations is often used to avoid collisions. However, a stroke-limited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power. To solve this problem, the design approach with variable gain and limited area (VGLA) is proposed in this study. First, the boundary of variable-limited areas is calculated based on the real-time status of the moving mass. The variable gain (VG) expression at the variable limited area is deduced… More >

  • Open Access

    ARTICLE

    A New Scheme of the ARA Transform for Solving Fractional-Order Waves-Like Equations Involving Variable Coefficients

    Yu-Ming Chu1, Sobia Sultana2, Shazia Karim3, Saima Rashid4,*, Mohammed Shaaf Alharthi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 761-791, 2024, DOI:10.32604/cmes.2023.028600

    Abstract The goal of this research is to develop a new, simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations (PDEs) with variable coefficient. ARA-transform is a robust and highly flexible generalization that unifies several existing transforms. The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion. The process of finding approximations for dynamical fractional-order PDEs is challenging, but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern and then determining the series… More >

  • Open Access

    ARTICLE

    Detection of a Quasiperiodic Phenomenon of a Binary Star System Using Convolutional Neural Network

    Denis Benka*, Sabína Vašová, Michal Kebísek, Maximilián Strémy

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2519-2535, 2023, DOI:10.32604/iasc.2023.040799

    Abstract Pattern recognition algorithms are commonly utilized to discover certain patterns, particularly in image-based data. Our study focuses on quasiperiodic oscillations (QPO) in celestial objects referred to as cataclysmic variables (CV). We are dealing with interestingly indistinct QPO signals, which we analyze using a power density spectrum (PDS). The confidence in detecting the latter using certain statistical approaches may come out with less significance than the truth. We work with real and simulated QPO data of a CV called MV Lyrae. Our primary statistical tool for determining confidence levels is sigma intervals. The aforementioned CV has scientifically proven QPO existence, but… More >

  • Open Access

    PROCEEDINGS

    A Novel Topology Optimization Method for Local Relative Displacement Difference Minimization

    Jinyu Gu1, Jinping Qu1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09161

    Abstract In the topology optimization problem of mechanical structures, the optimization objectives are mainly focused on the compliance minimization, displacement minimization, stress minimization, and so on. However, in practical engineering, these kinds of optimization objectives do not meet all the requirements. Some structures, such as wind turbine blades and engine blades of aircrafts, are required to maintain a superior aerodynamic shape under external loads. This puts a higher requirement on the local deformation homogenization of the structure. Therefore, we proposed a topology optimization method for the minimization of local relative displacement differences considering stress constraints. First, we present a specific topology… More >

  • Open Access

    PROCEEDINGS

    A Shape Optimization Approach for 3D Doubly-Periodic Multi-Layered Systems

    Haibo Chen1,*, Fuhang Jiang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09414

    Abstract Acoustic wave propagation has been the subject of many studies in engineering and physics. Researchers have shown an increased interest in recent years in the acoustic scattering of periodic systems, such as phononic crystals and metamaterials [1]. These artificial periodic systems possess some particular acoustic characteristics including noise control, waveguides and negative refraction, which manifest excellent potential applicability in acoustic engineering. Based on the isogeometric acoustic boundary element method (BEM) [2], an efficient shape optimization approach is proposed in this research for threedimensional doubly-periodic multi-layered systems. The interfaces between different acoustic mediums are infinite doubly periodic surfaces, which can be… More >

  • Open Access

    ARTICLE

    EFFECTS OF VARIABLE VISCOSITY AND VARIABLE THERMAL CONDUCTIVITY ON HYDROMAGNETIC DUSTY FLUID FLOW DUE TO A ROTATING DISK

    Jadav Konch*, G. C. Hazarika

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-10, 2017, DOI:10.5098/hmt.8.39

    Abstract This paper investigates momentum, heat and mass transfer characteristics of a hydromagnetic Newtonian dusty fluid flow due to a rotating disk with radiation and viscous dissipation. The main objective of this paper is to study effects of temperature dependent viscosity and thermal conductivity on flow, temperature and species concentration. Radiation and viscous dissipation effects are also taken into account. Saffman model for dusty fluid is considered for the problem. The partial differential equations governing the flow are converted into ordinary differential equations employing similarity transformations. The resulting highly nonlinear coupled ordinary differential equations are solved numerically using shooting technique with… More >

  • Open Access

    ARTICLE

    SCALING GROUP TRANSFORMATION FOR MIXED CONVECTION IN A POWER-LAW FLUID SATURATED POROUS MEDIUM WITH EFFECTS OF SORET, RADIATION AND VARIABLE PROPERTIES

    J. Pranithaa,* , G. Venkata Sumana , D. Srinivasacharyaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.39

    Abstract An analysis is performed to investigate the influence of radiation, thermal-diffusion and variable properties on mixed convection flow, heat and mass transfer from a vertical plate in a porous medium saturated with a power-law fluid. The non-linear partial differential equations are reduced to ordinary differential equations by implementing Lie scaling group transformations. These ordinary differential equations are solved numerically by implementing a shooting technique. The numerical results for dimensionless velocity, temperature and concentration profiles for pseudo-plastic, Newtonian and dilatant fluids are presented graphically for different values of variable viscosity, variable thermal conductivity, Soret and radiation parameters. Heat and mass transfer… More >

  • Open Access

    ARTICLE

    SOLUTE TRANSPORT AND HEAT TRANSFER IN SINGLE-PHASE FLOW IN POROUS MEDIUM WITH GENERATIVE/DESTRUCTIVE CHEMICAL REACTION AND VARIABLE VISCOSITY IMPACTS

    Driss Achemlala,† , Mohammed Sritib , Mohamed El Harouib , Elyazid Flilihib , Mounir Kriraaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.34

    Abstract In this paper we study the combined free convection, due to thermal and species diffusion, of a viscous incompressible non Newtonian fluid over a vertical plate embedded in a saturated porous medium with three thermal states of the surface and a constant concentration in the presence of a chemical reaction. The effect of temperature dependent viscosity is also investigated. The Ostwald-de Waele power-law model is used to characterize the non-Newtonian fluid behavior. The governing boundary layer equations along with the boundary conditions are first cast into a dimensionless form by a unique similarity transformation and the resulting coupled differential equations… More >

  • Open Access

    ARTICLE

    VARIABLE HEAT SOURCE AND WALL RADIATION EFFECTS ON BOUNDARY LAYER CONVECTION FROM AN INCLINED PLATE IN NON-DARCIAN POROUS MEDIUM

    Elyazid Flilihia,† , Mohammed Sritia , Driss Achemlalb , Mohamed El harouia

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.23

    Abstract A semi - analytical investigation is performed to analyze the thermal convection flow with a radiation flux and a variable internal heat generation along an inclined plate embedded in a saturated porous medium. The flow in the porous medium is modeled with the Darcy-Brinkman law taking into account the convective term, while the temperature field is obtained from the energy equation. These governing equations with the boundary conditions are first cast into a dimensionless form by using a unique similarity transformation and the resulting coupled differential equations are then solved numerically by a computational program based on the fifth order… More >

Displaying 21-30 on page 3 of 180. Per Page