Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (35)
  • Open Access

    ARTICLE

    Despeckling of Ultrasound Images Using Modified Local Statistics Mean Variance Filter

    Ranu Gupta1,3,*, Rahul Pachauri2,3, Ashutosh Singh1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.1, pp. 19-32, 2018, DOI:10.3970/cmes.2018.114.019

    Abstract This article presents an improved method of despeckling the ultrasound medical images. In this paper a modified local statistics mean variance filter method has been proposed. In the proposed method, more consideration is given to local statistics since local statistical features are more important rather than global features.Various parameters like mean square error, peak signal to noise ratio, quality index, and structural similarity index measure are calculated to analyze the quality of the despeckled image. More >

  • Open Access

    ARTICLE

    Variance-based Sensitivity Analyses of Piezoelectric Models

    T. Lahmer1, J. Ilg2, R. Lerch2

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.2, pp. 105-126, 2015, DOI:10.3970/cmes.2015.106.105

    Abstract In the recent years many publications appeared putting emphasis on the simulation-based identification of piezoelectric material parameters from electrical or mechanical measurements and combinations of them. By experience, one is aware of the importance of a single input parameter. However, it is not yet fully understood and in particular quantified to which extend missing knowledge in the single parameters (parameter uncertainty) influences the quality of the model's prognosis. In this paper, we adapt and apply variance-based sensitivity measures to models describing the piezoelectric effect in the linear case and derive global information about the single input parameter's sensitivities. More >

  • Open Access

    ARTICLE

    High-Performance 3D Hybrid/Mixed, and Simple 3D Voronoi Cell Finite Elements, for Macro- & Micro-mechanical Modeling of Solids, Without Using Multi-field Variational Principles

    P. L. Bishay1, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.1, pp. 41-98, 2012, DOI:10.3970/cmes.2012.084.041

    Abstract Higher-order two-dimensional as well as low and higher-order three-dimensional new Hybrid/Mixed (H/M) finite elements based on independently assumed displacement, and judiciously chosen strain fields, denoted by HMFEM-2, are developed here for applications in macro-mechanics. The idea of these new H/M finite elements is based on collocating the components of the independent strain field, with those derived from the independently assumed displacement fields at judiciously and cleverly chosen collocation points inside the element. This is unlike the other techniques used in older H/M finite elements where a two-field variational principle was used in order to enforce both equilibrium and compatibility conditions… More >

  • Open Access

    ARTICLE

    Prediction of Compressive Strength of Various SCC Mixes Using Relevance Vector Machine

    G. Jayaprakash1, M. P. Muthuraj2,*

    CMC-Computers, Materials & Continua, Vol.54, No.1, pp. 83-102, 2018, DOI:10.3970/cmc.2018.054.083

    Abstract This paper discusses the applicability of relevance vector machine (RVM) based regression to predict the compressive strength of various self compacting concrete (SCC) mixes. Compressive strength data various SCC mixes has been consolidated by considering the effect of water cement ratio, water binder ratio and steel fibres. Relevance vector machine (RVM) is a machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and classification. The RVM has an identical functional form to the support vector machine, but provides probabilistic classification and regression. RVM is based on a Bayesian formulation of a linear model with an appropriate… More >

  • Open Access

    ARTICLE

    A Simple Procedure to Develop Efficient & Stable Hybrid/Mixed Elements, and Voronoi Cell Finite Elements for Macro- & Micromechanics

    L. Dong1, S. N. Atluri2

    CMC-Computers, Materials & Continua, Vol.24, No.1, pp. 61-104, 2011, DOI:10.3970/cmc.2011.024.061

    Abstract A simple procedure to formulate efficient and stable hybrid/mixed finite elements is developed, for applications in macro- as well as micromechanics. In this method, the strain and displacement field are independently assumed. Instead of using two-field variational principles to enforce both equilibrium and compatibility conditions in a variational sense, the independently assumed element strains are related to the strains derived from the independently assumed element displacements, at a finite number of collocation points within the element. The element stiffness matrix is therefore derived, by simply using the principle of minimum potential energy. Taking the four-node plane isoparametric element as an… More >

Displaying 31-40 on page 4 of 35. Per Page