Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (217)
  • Open Access

    ARTICLE

    Enhancing Anomaly Detection with Causal Reasoning and Semantic Guidance

    Weishan Gao1,2, Ye Wang1,2, Xiaoyin Wang1,2, Xiaochuan Jing1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073850 - 12 January 2026

    Abstract In the field of intelligent surveillance, weakly supervised video anomaly detection (WSVAD) has garnered widespread attention as a key technology that identifies anomalous events using only video-level labels. Although multiple instance learning (MIL) has dominated the WSVAD for a long time, its reliance solely on video-level labels without semantic grounding hinders a fine-grained understanding of visually similar yet semantically distinct events. In addition, insufficient temporal modeling obscures causal relationships between events, making anomaly decisions reactive rather than reasoning-based. To overcome the limitations above, this paper proposes an adaptive knowledge-based guidance method that integrates external structured… More >

  • Open Access

    ARTICLE

    DyLoRA-TAD: Dynamic Low-Rank Adapter for End-to-End Temporal Action Detection

    Jixin Wu1,2, Mingtao Zhou2,3, Di Wu2,3, Wenqi Ren4, Jiatian Mei2,3, Shu Zhang1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072964 - 12 January 2026

    Abstract End-to-end Temporal Action Detection (TAD) has achieved remarkable progress in recent years, driven by innovations in model architectures and the emergence of Video Foundation Models (VFMs). However, existing TAD methods that perform full fine-tuning of pretrained video models often incur substantial computational costs, which become particularly pronounced when processing long video sequences. Moreover, the need for precise temporal boundary annotations makes data labeling extremely expensive. In low-resource settings where annotated samples are scarce, direct fine-tuning tends to cause overfitting. To address these challenges, we introduce Dynamic Low-Rank Adapter (DyLoRA), a lightweight fine-tuning framework tailored specifically… More >

  • Open Access

    ARTICLE

    Advanced Video Processing and Data Transmission Technology for Unmanned Ground Vehicles in the Internet of Battlefield Things (loBT)

    Tai Liu1,2, Mao Ye2,*, Feng Wu3, Chao Zhu2, Bo Chen2, Guoyan Zhang1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072692 - 12 January 2026

    Abstract With the continuous advancement of unmanned technology in various application domains, the development and deployment of blind-spot-free panoramic video systems have gained increasing importance. Such systems are particularly critical in battlefield environments, where advanced panoramic video processing and wireless communication technologies are essential to enable remote control and autonomous operation of unmanned ground vehicles (UGVs). However, conventional video surveillance systems suffer from several limitations, including limited field of view, high processing latency, low reliability, excessive resource consumption, and significant transmission delays. These shortcomings impede the widespread adoption of UGVs in battlefield settings. To overcome these… More >

  • Open Access

    ARTICLE

    Action Recognition via Shallow CNNs on Intelligently Selected Motion Data

    Jalees Ur Rahman1, Muhammad Hanif1, Usman Haider2,*, Saeed Mian Qaisar3,*, Sarra Ayouni4

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071251 - 12 January 2026

    Abstract Deep neural networks have achieved excellent classification results on several computer vision benchmarks. This has led to the popularity of machine learning as a service, where trained algorithms are hosted on the cloud and inference can be obtained on real-world data. In most applications, it is important to compress the vision data due to the enormous bandwidth and memory requirements. Video codecs exploit spatial and temporal correlations to achieve high compression ratios, but they are computationally expensive. This work computes the motion fields between consecutive frames to facilitate the efficient classification of videos. However, contrary… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for Real-Time Cheating Behaviour Detection in Online Exams Using Video Captured Analysis

    Dao Phuc Minh Huy1, Gia Nhu Nguyen1, Dac-Nhuong Le2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070948 - 12 January 2026

    Abstract Online examinations have become a dominant assessment mode, increasing concerns over academic integrity. To address the critical challenge of detecting cheating behaviours, this study proposes a hybrid deep learning approach that combines visual detection and temporal behaviour classification. The methodology utilises object detection models—You Only Look Once (YOLOv12), Faster Region-based Convolutional Neural Network (RCNN), and Single Shot Detector (SSD) MobileNet—integrated with classification models such as Convolutional Neural Networks (CNN), Bidirectional Gated Recurrent Unit (Bi-GRU), and CNN-LSTM (Long Short-Term Memory). Two distinct datasets were used: the Online Exam Proctoring (EOP) dataset from Michigan State University and… More >

  • Open Access

    ARTICLE

    Multi-CNN Fusion Framework for Predictive Violence Detection in Animated Media

    Tahira Khalil1, Sadeeq Jan2,*, Rania M. Ghoniem3, Muhammad Imran Khan Khalil1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072655 - 09 December 2025

    Abstract The contemporary era is characterized by rapid technological advancements, particularly in the fields of communication and multimedia. Digital media has significantly influenced the daily lives of individuals of all ages. One of the emerging domains in digital media is the creation of cartoons and animated videos. The accessibility of the internet has led to a surge in the consumption of cartoons among young children, presenting challenges in monitoring and controlling the content they view. The prevalence of cartoon videos containing potentially violent scenes has raised concerns regarding their impact, especially on young and impressionable minds.… More >

  • Open Access

    ARTICLE

    Efficient Video Emotion Recognition via Multi-Scale Region-Aware Convolution and Temporal Interaction Sampling

    Xiaorui Zhang1,2,*, Chunlin Yuan3, Wei Sun4, Ting Wang5

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.071043 - 09 December 2025

    Abstract Video emotion recognition is widely used due to its alignment with the temporal characteristics of human emotional expression, but existing models have significant shortcomings. On the one hand, Transformer multi-head self-attention modeling of global temporal dependency has problems of high computational overhead and feature similarity. On the other hand, fixed-size convolution kernels are often used, which have weak perception ability for emotional regions of different scales. Therefore, this paper proposes a video emotion recognition model that combines multi-scale region-aware convolution with temporal interactive sampling. In terms of space, multi-branch large-kernel stripe convolution is used to More >

  • Open Access

    ARTICLE

    Relationship between Chinese Medical Students’ Perceived Stress and Short-Form Video Addiction: A Perspective Based on the Multiple Theoretical Frameworks

    Zhi-Yun Zhang1,*, Yaqiong Wu1, Chenshi Deng2, Peng Wang3, Weiguaju Nong4,*

    International Journal of Mental Health Promotion, Vol.27, No.10, pp. 1533-1551, 2025, DOI:10.32604/ijmhp.2025.070883 - 31 October 2025

    Abstract Objectives: Medical students often rely on recreational internet media to relieve the stress caused by immense academic and life pressures, and among these media, short-form videos, which are an emerging digital medium, have gradually become the mainstream choice of students to relieve their stress. However, the addiction caused by their usage has attracted the widespread attention of both academia and society, which is why the purpose of this study is to systematically explore the underlying mechanisms that link perceived stress, entertainment gratification, emotional gratification, short-form video usage intensity, and short-form video addiction based on multiple… More >

  • Open Access

    ARTICLE

    Lightweight Multi-Layered Encryption and Steganography Model for Protecting Secret Messages in MPEG Video Frames

    Sara H. Elsayed1, Rodaina Abdelsalam1, Mahmoud A. Ismail Shoman2, Raed Alotaibi3,*, Omar Reyad4,5,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4995-5013, 2025, DOI:10.32604/cmc.2025.068429 - 23 October 2025

    Abstract Ensuring the secure transmission of secret messages, particularly through video—one of the most widely used media formats—is a critical challenge in the field of information security. Relying on a single-layered security approach is often insufficient for safeguarding sensitive data. This study proposes a triple-lightweight cryptographic and steganographic model that integrates the Hill Cipher Technique (HCT), Rotation Left Digits (RLD), and Discrete Wavelet Transform (DWT) to embed secret messages within video frames securely. The approach begins with encrypting the secret text using a private key matrix (PK1) of size 2 × 2 up to 6 × 6… More >

  • Open Access

    ARTICLE

    Leveraging Federated Learning for Efficient Privacy-Enhancing Violent Activity Recognition from Videos

    Moshiur Rahman Tonmoy1, Md. Mithun Hossain1, Mejdl Safran2,*, Sultan Alfarhood2, Dunren Che3, M. F. Mridha4

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5747-5763, 2025, DOI:10.32604/cmc.2025.067589 - 23 October 2025

    Abstract Automated recognition of violent activities from videos is vital for public safety, but often raises significant privacy concerns due to the sensitive nature of the footage. Moreover, resource constraints often hinder the deployment of deep learning-based complex video classification models on edge devices. With this motivation, this study aims to investigate an effective violent activity classifier while minimizing computational complexity, attaining competitive performance, and mitigating user data privacy concerns. We present a lightweight deep learning architecture with fewer parameters for efficient violent activity recognition. We utilize a two-stream formation of 3D depthwise separable convolution coupled More >

Displaying 1-10 on page 1 of 217. Per Page