Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (593)
  • Open Access

    ARTICLE

    A New Scheme of the ARA Transform for Solving Fractional-Order Waves-Like Equations Involving Variable Coefficients

    Yu-Ming Chu1, Sobia Sultana2, Shazia Karim3, Saima Rashid4,*, Mohammed Shaaf Alharthi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 761-791, 2024, DOI:10.32604/cmes.2023.028600 - 22 September 2023

    Abstract The goal of this research is to develop a new, simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations (PDEs) with variable coefficient. ARA-transform is a robust and highly flexible generalization that unifies several existing transforms. The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion. The process of finding approximations for dynamical fractional-order PDEs is challenging, but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern… More >

  • Open Access

    ARTICLE

    Resource Allocation for IRS Assisted mmWave Wireless Powered Sensor Networks with User Cooperation

    Yonghui Lin1, Zhengyu Zhu2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 663-677, 2024, DOI:10.32604/cmes.2023.028584 - 22 September 2023

    Abstract In this paper, we investigate IRS-aided user cooperation (UC) scheme in millimeter wave (mmWave) wireless-powered sensor networks (WPSN), where two single-antenna users are wireless powered in the wireless energy transfer (WET) phase first and then cooperatively transmit information to a hybrid access point (AP) in the wireless information transmission (WIT) phase, following which the IRS is deployed to enhance the system performance of the WET and WIT. We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots, power allocations, and the phase shifts of the IRS. Due to the non-convexity of the More >

  • Open Access

    ARTICLE

    Effect of Blasting Stress Wave on Dynamic Crack Propagation

    Huizhen Liu1,2, Duanying Wan3, Meng Wang3, Zheming Zhu3, Liyun Yang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 349-368, 2024, DOI:10.32604/cmes.2023.028197 - 22 September 2023

    Abstract Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation. Therefore, evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting. In this study, ANSYS/LS-DYNA was used for blasting numerical simulation, in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed. Moreover, ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors (DSIFs). The universal function was calculated… More >

  • Open Access

    PROCEEDINGS

    Simulation of Wave Propagation Through Inhomogeneous Medium Waveguides Based on Green’s Functions

    Wenzhi Xu1, ZhuoJia Fu1,*, Qiang Xi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.010437

    Abstract Acoustic wave propagation through an inhomogeneous medium may lead to undergo substantial modification. This paper proposed a Green’s functions-based method for the simulation of wave propagation through inhomogeneous medium waveguides. Under ideal conditions, a modified wave equation is derived by variable transformations, in which only the wave speed varies with spatial coordinates. Based on the modified wave equation the acoustic Green’s functions are derived. Then, the localized method of fundamental solution (LMFS) in conjunction with the acoustic Green’s functions is introduced to solve the modified wave equation. In the LMFS, the acoustic Green’s function is More >

  • Open Access

    PROCEEDINGS

    How Travelling Wavelength Affects Hydrodynamic Performance of Two Linear-Accelerating Mirror-Symmetric Fish-Like Swimmers

    Zhonglu Lin1,2, Dongfang Liang2, Yu Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-9, 2023, DOI:10.32604/icces.2023.010442

    Abstract Fish schools are capable of simultaneous linear acceleration. To reveal the underlying hydrodynamic mechanism, we numerically investigate how Reynolds number Re = 1000−2000, Strouhal number St = 0.2−0.7 and wavelength λ = 0.5−2 affects the mean net thrust of two side-by-side NACA0012 hydrofoils undulating in anti-phase. In total, 550 cases are simulated using immersed boundary method. The thrust is strengthened by wavelength and Strouhal number, yet only slightly by the Reynolds number. We apply the symbolic regression algorithm to formulate this relationship as a high-level summary. More >

  • Open Access

    PROCEEDINGS

    Thrust Generation and Flow Structure of a Flapping Foil in a Stratified Flow

    Jiadong Wang1, Prabal Kandel1, Jian Deng1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09788

    Abstract The flapping foils with appropriate locomotion inspired by the high-aspect-ratio appendages from natural animals promise a new technical solution for the propulsion of both aircrafts and marine vehicles. The artificial devices using such a novel thrust system are possibly placed in a stratified flow due to the fact that the stratification is ubiquitous throughout real-world environment. Based on a series of two-dimensional numerical simulations, the propulsive performance and wake structure of a fully-activated flapping foil in a density stratified fluid are investigated in this work. It is found that the hydrodynamic characteristics of flapping foils… More >

  • Open Access

    ARTICLE

    Effects of T-Factor on Quantum Annealing Algorithms for Integer Factoring Problem

    Zhiqi Liu1, Shihui Zheng1, Xingyu Yan1, Ping Pan1,2, Licheng Wang1,3,*

    Journal of Quantum Computing, Vol.5, pp. 41-54, 2023, DOI:10.32604/jqc.2023.045572 - 12 December 2023

    Abstract The hardness of the integer factoring problem (IFP) plays a core role in the security of RSA-like cryptosystems that are widely used today. Besides Shor’s quantum algorithm that can solve IFP within polynomial time, quantum annealing algorithms (QAA) also manifest certain advantages in factoring integers. In experimental aspects, the reported integers that were successfully factored by using the D-wave QAA platform are much larger than those being factored by using Shor-like quantum algorithms. In this paper, we report some interesting observations about the effects of QAA for solving IFP. More specifically, we introduce a metric, More >

  • Open Access

    ARTICLE

    A Monitoring Method for Transmission Tower Foots Displacement Based on Wind-Induced Vibration Response

    Zhicheng Liu1, Long Zhao1,*, Guanru Wen1, Peng Yuan2, Qiu Jin1

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 541-555, 2023, DOI:10.32604/sdhm.2023.029760 - 17 November 2023

    Abstract The displacement of transmission tower feet can seriously affect the safe operation of the tower, and the accuracy of structural health monitoring methods is limited at the present stage. The application of deep learning method provides new ideas for structural health monitoring of towers, but the current amount of tower vibration fault data is restricted to provide adequate training data for Deep Learning (DL). In this paper, we propose a DT-DL based tower foot displacement monitoring method, which firstly simulates the wind-induced vibration response data of the tower under each fault condition by finite element… More > Graphic Abstract

    A Monitoring Method for Transmission Tower Foots Displacement Based on Wind-Induced Vibration Response

  • Open Access

    ARTICLE

    Recognizing Breast Cancer Using Edge-Weighted Texture Features of Histopathology Images

    Arslan Akram1,2, Javed Rashid2,3,4, Fahima Hajjej5, Sobia Yaqoob1,6, Muhammad Hamid7, Asma Irshad8, Nadeem Sarwar9,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1081-1101, 2023, DOI:10.32604/cmc.2023.041558 - 31 October 2023

    Abstract Around one in eight women will be diagnosed with breast cancer at some time. Improved patient outcomes necessitate both early detection and an accurate diagnosis. Histological images are routinely utilized in the process of diagnosing breast cancer. Methods proposed in recent research only focus on classifying breast cancer on specific magnification levels. No study has focused on using a combined dataset with multiple magnification levels to classify breast cancer. A strategy for detecting breast cancer is provided in the context of this investigation. Histopathology image texture data is used with the wavelet transform in this… More >

  • Open Access

    ARTICLE

    In-Situ Growing of Branched CNFs on Reusable RCFs to Construct Hierarchical Cross-Linked Composite for Enhanced Microwave Absorption

    Lei Liu*, Shenao Pang, Zhuhui Luo

    Journal of Renewable Materials, Vol.11, No.11, pp. 3891-3906, 2023, DOI:10.32604/jrm.2023.028192 - 31 October 2023

    Abstract The recycling of carbon fibers and protection from unwanted microwave radiation are two important environmental issues that need to be addressed in modern society. Herein, branched carbon nanofibers (CNFs) were grown in-situ on recycled carbon fibers (RCFs) through the chemical vapor deposition method using nickel as catalysts and thiophene as aided-catalysts. The effect of thiophene on the growth morphology of CNFs was investigated. Correspondingly, branched CNFs-RCFs and straight CNFs-RCFs were respectively obtained in the presence and absence of thiophene. The microstructure and electromagnetic behaviour investigations have shown that the branched CNFs possess a typical multi-branched structure, More > Graphic Abstract

    <i>In-Situ</i> Growing of Branched CNFs on Reusable RCFs to Construct Hierarchical Cross-Linked Composite for Enhanced Microwave Absorption

Displaying 41-50 on page 5 of 593. Per Page