Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (193)
  • Open Access

    ARTICLE

    A Method for the Detection of the Distance & Orientation of the Relief Well to a Blowout Well in Offshore Drilling

    Cui Li1, Deli Gao1, Zhiyong Wu1, Binbin Diao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.1, pp. 39-56, 2012, DOI:10.3970/cmes.2012.089.039

    Abstract At present, a relief well is the most reliable method to control serious blowout accidents, and it is necessary to detect very accurately the relative position of the relief well and the blowout well. The detection tool should be capable of detecting directly the relative distance and direction between the relief well and the blowout well. Its detection accuracy should also meet the engineering demand of drilling a relief well. Using the working principle of a proposed detection tool, this paper analyzes the spread and attenuation laws of the current injected by a single-electrode or three-electrode array in the relief… More >

  • Open Access

    ARTICLE

    Mechanical Analyses of Casings in Boreholes, under Non-uniform Remote Crustal Stress Fields: Analytical & Numerical Methods

    Fei Yin1, Deli Gao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.1, pp. 25-38, 2012, DOI:10.3970/cmes.2012.089.025

    Abstract The methods to design the casings used in oilfields, are currently based on the assumptions that the remote crustal-stress-field is axially symmetric, in plane strain. However, most of the failures of the casings are caused by non-uniform and asymmetric far-field crustal stresses, so that it is necessary for a proper design of the casings, to investigate and understand the casing's behavior under non-uniform far-field crustal stresses. A mechanical model is first established for the system, consisting of the casing and formation, by using the plane strain theory of linear elasticity. The non-uniform crustal stress is resolved into a uniform stress… More >

  • Open Access

    ARTICLE

    On 3D FE Analyses For Understanding & Designing the Processes of Casing-Window-Milling for Sidetracking From Existing Wells

    Zhaohui Xu1, Deli Gao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.1, pp. 17-24, 2012, DOI:10.3970/cmes.2012.089.017

    Abstract Little is explained about the process of casing window milling for sidetracking due to lack of analytical method for its mechanical characteristic. In this paper, 3D FE models are established using the commercial finite-element software ABAQUS/Explicit to make simulation analysis for two key stages of the process including the initial stage of casing milling and the stage of full-gauge casing window milling. The models involve the effects of main drilling parameters such as reaction force, torque, speed, feed rate per revolution, and milling angle. The calculation results verify the capability and advantages of 3D FE simulation for the process of… More >

  • Open Access

    ARTICLE

    On a Method of Prediction of the Annular Pressure Buildup in Deepwater Wells for Oil & Gas

    Deli Gao1, Feng Qian1, Huikai Zheng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.1, pp. 1-16, 2012, DOI:10.3970/cmes.2012.089.001

    Abstract In deepwater wells for exploration and exploitation of oil & gas, the wellhead structure is of importance, and the annular pressure cannot be released after the casing hanger is set. The pressure changes in the casing annuli, caused by the temperature changes during the drilling and production processes, will increase the risk of failure of the casing. Therefore, a study of the safety of the casing in deepwater wells, by considering the complex engineering factors, will be of both academic as well as practical significance. In this paper, a model for the interactions among the casing-cement-formation system is established, by… More >

  • Open Access

    ARTICLE

    Parallel iterative procedures for a computational electromagnetic modeling based on a nonconforming mixed finite element method

    Taeyoung Ha1, Sangwon Seo2, Dongwoo Sheen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.1, pp. 57-76, 2006, DOI:10.3970/cmes.2006.014.057

    Abstract We present nonoverlapping domain decomposition methods for the approximation of both electromagnetic fields in a three-dimensional bounded domain satisfying absorbing boundary conditions. A Seidel-type domain decomposition iterative method is introduced based on a hybridization of a nonconforming mixed finite element method. Convergence results for the numerical procedure are proved by introducing a suitable pseudo-energy. The spectral radius of the iterative procedure is estimated and a method for choosing an optimal matching parameter is given. A red-black Seidel-type method which is readily parallelizable is also introduced and analyzed. Numerical experiments confirm that the presented algorithms are faster than the conventional Jacobi-type… More >

  • Open Access

    ARTICLE

    Transform Domain Based Hybrid Element Formulations for Transient Electromagnetic Field Computations

    P. Jose1, R.Kanapady2, K.K.Tamma3

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.5, pp. 409-422, 2004, DOI:10.3970/cmes.2004.005.409

    Abstract In this article, a novel hybrid finite element and Laplace transform formulation is presented for the computations of transient electromagnetic fields. The formulation is first based on application of Laplace transform technique for the pertinent differential equations, namely the Maxwell's equation in the non-integral form with subsequently, employing the Galerkin finite element formulations on the transformed equations to maintain the modeling versatility of complex geometries and numerical features for computational analysis. In addition, in conjunction with the above, proper scaling of the field quantities is applied to improve the condition of the effective global stiffness matrix. The problem is first… More >

  • Open Access

    ARTICLE

    High-Order Accurate Methods for Time-domain Electromagnetics

    J. S. Hesthaven1, T. Warburton2

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.5, pp. 395-408, 2004, DOI:10.3970/cmes.2004.005.395

    Abstract We discuss the formulation, validation, and parallel performance of a high-order accurate method for the time-domain solution of the three-dimensional Maxwell's equations on general unstructured grids. Attention is paid to the development of a general discontinuous element/penalty approximation to Maxwell's equations and a locally divergence free form of this. We further discuss the motivation for using a nodal Lagrangian basis for the accurate and efficient representation of solutions and operators. The performance of the scheme is illustrated by solving benchmark problems as well as large scale scattering applications. More >

  • Open Access

    ARTICLE

    Application of Symmetric Hyperbolic Systems for the Time-Dependent Maxwell's Equations in Bi-Anisotropic Media

    V.G.Yakhno1, T.M. Yakhno2

    CMES-Computer Modeling in Engineering & Sciences, Vol.80, No.3&4, pp. 233-250, 2011, DOI:10.3970/cmes.2011.080.233

    Abstract The time-dependent Maxwell's equations in non-dispersive homogeneous bi-anisotropic materials are considered in the paper. These equations are written as a symmetric hyperbolic system. A new method of the computation of the electric and magnetic fields arising from electric current is suggested in the paper. This method consists of the following. The Maxwell's equations are written in terms of the Fourier transform with respect to the space variables. The Fourier image of the obtained system is a system of ordinary differential equations whose coefficients depend on the 3D Fourier parameter. The formula for the solution of the obtained system is derived… More >

  • Open Access

    ARTICLE

    New Algorithm for Evaluation of Electric Fields due to Indirect Lightning Strike

    Mahdi Izadi1, Mohd Zainal Abidin Ab. Kadir1

    CMES-Computer Modeling in Engineering & Sciences, Vol.67, No.1, pp. 1-12, 2010, DOI:10.3970/cmes.2010.067.001

    Abstract Evaluation of electric field due to indirect lightning strike is an interesting subject. Calculation of electric and magnetic fields in time domain with the consideration of ground conductivity effect in the shortest possible time is an important objective. In this paper, using dipole method, Maxwell's equation and Cooray-Rubinstein formula, a new method for calculation of electric field in time domain is proposed. In addition, this proposed algorithm can also be used to evaluate the effect at the far distance cases of observation point from lightning channel. More >

  • Open Access

    ARTICLE

    Geometric Formulation of Maxwell's Equations in the Frequency Domain for 3D Wave Propagation Problems in Unbounded Regions

    P. Bettini1, M. Midrio2, R. Specogna2

    CMES-Computer Modeling in Engineering & Sciences, Vol.66, No.2, pp. 117-134, 2010, DOI:10.3970/cmes.2010.066.117

    Abstract In this paper we propose a geometric formulation to solve 3D electromagnetic wave problems in unbounded regions in the frequency domain. An absorbing boundary condition (ABC) is introduced to limit the size of the computational domain by means of anisotropic Perfectly Matched Layers (PML) absorbing media in the outer layers of an unstructured mesh. The numerical results of 3D benchmark problems are presented and the effect of the PML parameters and scaling functions on PML effectiveness are discussed. More >

Displaying 171-180 on page 18 of 193. Per Page