Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (67)
  • Open Access

    ARTICLE

    Machine Learning Model for Wind Power Forecasting Using Enhanced Multilayer Perceptron

    Ahmed A. Ewees1,2,*, Mohammed A. A. Al-Qaness3, Ali Alshahrani1, Mohamed Abd Elaziz4

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2287-2303, 2025, DOI:10.32604/cmc.2025.061320 - 16 April 2025

    Abstract Wind power forecasting plays a crucial role in optimizing the integration of wind energy into the grid by predicting wind patterns and energy output. This enhances the efficiency and reliability of renewable energy systems. Forecasting approaches inform energy management strategies, reduce reliance on fossil fuels, and support the broader transition to sustainable energy solutions. The primary goal of this study is to introduce an effective methodology for estimating wind power through temporal data analysis. This research advances an optimized Multilayer Perceptron (MLP) model using recently proposed metaheuristic optimization algorithms, namely the Fire Hawk Optimizer (FHO)… More >

  • Open Access

    ARTICLE

    Maximum Power Point Tracking Control of Offshore Wind-Photovoltaic Hybrid Power Generation System with Crane-Assisted

    Xiangyang Cao1,2, Yaojie Zheng1,2, Hanbin Xiao1,2,*, Min Xiao2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 289-334, 2025, DOI:10.32604/cmes.2025.063954 - 11 April 2025

    Abstract This study investigates the Maximum Power Point Tracking (MPPT) control method of offshore wind-photovoltaic hybrid power generation system with offshore crane-assisted. A new algorithm of Global Fast Integral Sliding Mode Control (GFISMC) is proposed based on the tip speed ratio method and sliding mode control. The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter. An offshore wind power generation system model is presented to verify the algorithm effect. An offshore More >

  • Open Access

    ARTICLE

    Wavelet Transform Convolution and Transformer-Based Learning Approach for Wind Power Prediction in Extreme Scenarios

    Jifeng Liang1, Qiang Wang2, Leibao Wang1, Ziwei Zhang3, Yonghui Sun3,*, Hongzhu Tao4, Xiaofei Li5

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 945-965, 2025, DOI:10.32604/cmes.2025.062315 - 11 April 2025

    Abstract Wind power generation is subjected to complex and variable meteorological conditions, resulting in intermittent and volatile power generation. Accurate wind power prediction plays a crucial role in enabling the power grid dispatching departments to rationally plan power transmission and energy storage operations. This enhances the efficiency of wind power integration into the grid. It allows grid operators to anticipate and mitigate the impact of wind power fluctuations, significantly improving the resilience of wind farms and the overall power grid. Furthermore, it assists wind farm operators in optimizing the management of power generation facilities and reducing… More > Graphic Abstract

    Wavelet Transform Convolution and Transformer-Based Learning Approach for Wind Power Prediction in Extreme Scenarios

  • Open Access

    ARTICLE

    Correlation Analysis of Power Quality and Power Spectrum in Wind Power Hybrid Energy Storage Systems

    Jian Gao1, Hongliang Hao2, Caifeng Wen1,*, Yongsheng Wang3, Zhanhua Han4, Edwin E. Nykilla2, Yuwen Zhang2

    Energy Engineering, Vol.122, No.3, pp. 1175-1198, 2025, DOI:10.32604/ee.2025.061083 - 07 March 2025

    Abstract Power quality is a crucial area of research in contemporary power systems, particularly given the rapid proliferation of intermittent renewable energy sources such as wind power. This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra, PSD, and random signal power spectra. The relationship was derived, validated through experiments and simulations, and subsequently applied to multi-objective optimization. Various optimization algorithms were compared to achieve optimal system power quality. The findings revealed that the relationships between power quality indices and PSD were influenced by variations in More >

  • Open Access

    ARTICLE

    Short-Term Wind Power Forecast Based on STL-IAOA-iTransformer Algorithm: A Case Study in Northwest China

    Zhaowei Yang1, Bo Yang2,*, Wenqi Liu1, Miwei Li2, Jiarong Wang2, Lin Jiang3, Yiyan Sang4, Zhenning Pan5

    Energy Engineering, Vol.122, No.2, pp. 405-430, 2025, DOI:10.32604/ee.2025.059515 - 31 January 2025

    Abstract Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids. Although numerous studies have employed various methods to forecast wind power, there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction. To improve the accuracy of short-term wind power forecast, this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer, which is based on seasonal and trend decomposition using LOESS (STL) and iTransformer model optimized by improved arithmetic optimization algorithm (IAOA).… More >

  • Open Access

    ARTICLE

    Probabilistic Calculation of Tidal Currents for Wind Powered Systems Using PSO Improved LHS

    Hongsheng Su, Shilin Song*, Xingsheng Wang

    Energy Engineering, Vol.121, No.11, pp. 3289-3303, 2024, DOI:10.32604/ee.2024.054643 - 21 October 2024

    Abstract This paper introduces the Particle Swarm Optimization (PSO) algorithm to enhance the Latin Hypercube Sampling (LHS) process. The key objective is to mitigate the issues of lengthy computation times and low computational accuracy typically encountered when applying Monte Carlo Simulation (MCS) to LHS for probabilistic trend calculations. The PSO method optimizes sample distribution, enhances global search capabilities, and significantly boosts computational efficiency. To validate its effectiveness, the proposed method was applied to IEEE34 and IEEE-118 node systems containing wind power. The performance was then compared with Latin Hypercubic Important Sampling (LHIS), which integrates significant sampling More >

  • Open Access

    ARTICLE

    Three-Level Optimal Scheduling and Power Allocation Strategy for Power System Containing Wind-Storage Combined Unit

    Jingjing Bai1, Yunpeng Cheng1, Shenyun Yao2,*, Fan Wu1, Cheng Chen1

    Energy Engineering, Vol.121, No.11, pp. 3381-3400, 2024, DOI:10.32604/ee.2024.053683 - 21 October 2024

    Abstract To mitigate the impact of wind power volatility on power system scheduling, this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy. And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit. The strategy takes smoothing power output as the main objectives. The first level is the wind-storage joint scheduling, and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster (WPC), respectively, according to the scheduling power of WPC and… More >

  • Open Access

    ARTICLE

    Distributed Robust Scheduling Optimization of Wind-Thermal-Storage System Based on Hybrid Carbon Trading and Wasserstein Fuzzy Set

    Gang Wang*, Yuedong Wu, Xiaoyi Qian, Yi Zhao

    Energy Engineering, Vol.121, No.11, pp. 3417-3435, 2024, DOI:10.32604/ee.2024.052268 - 21 October 2024

    Abstract A robust scheduling optimization method for wind–fire storage system distribution based on the mixed carbon trading mechanism is proposed to improve the rationality of carbon emission quota allocation while reducing the instability of large-scale wind power access systems. A hybrid carbon trading mechanism that combines short-term and long-term carbon trading is constructed, and a fuzzy set based on Wasserstein measurement is proposed to address the uncertainty of wind power access. Moreover, a robust scheduling optimization method for wind–fire storage systems is formed. Results of the multi scenario comparative analysis of practical cases show that the More >

  • Open Access

    ARTICLE

    Optimal Configuration Method for Multi-Type Reactive Power Compensation Devices in Regional Power Grid with High Proportion of Wind Power

    Ying Wang1, Jie Dang1, Cangbi Ding2,*, Chenyi Zheng2, Yi Tang2

    Energy Engineering, Vol.121, No.11, pp. 3331-3353, 2024, DOI:10.32604/ee.2024.052066 - 21 October 2024

    Abstract As the large-scale development of wind farms (WFs) progresses, the connection of WFs to the regional power grid is evolving from the conventional receiving power grid to the sending power grid with a high proportion of wind power (WP). Due to the randomness of WP output, higher requirements are put forward for the voltage stability of each node of the regional power grid, and various reactive power compensation devices (RPCDs) need to be rationally configured to meet the stable operation requirements of the system. This paper proposes an optimal configuration method for multi-type RPCDs in More >

  • Open Access

    ARTICLE

    Short-Term Wind Power Prediction Based on WVMD and Spatio-Temporal Dual-Stream Network

    Yingnan Zhao*, Yuyuan Ruan, Zhen Peng

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 549-566, 2024, DOI:10.32604/cmc.2024.056240 - 15 October 2024

    Abstract As the penetration ratio of wind power in active distribution networks continues to increase, the system exhibits some characteristics such as randomness and volatility. Fast and accurate short-term wind power prediction is essential for algorithms like scheduling and optimization control. Based on the spatio-temporal features of Numerical Weather Prediction (NWP) data, it proposes the WVMD_DSN (Whale Optimization Algorithm, Variational Mode Decomposition, Dual Stream Network) model. The model first applies Pearson correlation coefficient (PCC) to choose some NWP features with strong correlation to wind power to form the feature set. Then, it decomposes the feature set More >

Displaying 11-20 on page 2 of 67. Per Page