Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,722)
  • Open Access

    ARTICLE

    Elastic analysis in 3D anisotropic functionally graded solids by the MLPG

    J. Sladek1, V. Sladek1, P. Solek2

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.3, pp. 223-252, 2009, DOI:10.3970/cmes.2009.043.223

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed for solution of static and elastodynamic problems in 3-D continuously non-homogeneous anisotropic bodies. Functionally graded materials (FGM) are multi-phase materials with the phase volume fractions varying gradually in space, in a pre-determined profile. The Heaviside step function is used as the test functions in the local weak form resulting into the derived local integral equations (LIEs). For transient elastodynamic problems either the Laplace transform or the time difference techniques are applied. Nodal points are randomly distributed in the 3D analyzed domain and each node is surrounded by a spherical… More >

  • Open Access

    ARTICLE

    Transient Thermal Response of a Partially Insulated Crack in an Orthotropic Functionally Graded Strip under Convective Heat Supply

    Yueting Zhou1, Xing Li2, Dehao Yu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.3, pp. 191-222, 2009, DOI:10.3970/cmes.2009.043.191

    Abstract The transient response of an orthotropic functionally graded strip with a partially insulated crack under convective heat transfer supply is considered. It is modeled there exists thermal resistant in the heat conduction through the crack region. The mixed boundary value problems of the temperature field and displacement field are reduced to a system of singular integral equations in Laplace domain. The expressions with high order asymptotic terms for the singular integral kernel are considered to improve the accuracy and efficiency. The numerical results present the effect of the material nonhomogeneous parameters, the orthotropic parameters and dimensionless thermal resistant on the… More >

  • Open Access

    ARTICLE

    Applications of the Fictitious Time Integration Method Using a New Time-Like Function

    Cheng-Yu Ku1,2, Weichung Yeih1,2, Chein-Shan Liu3, Chih-Chang Chi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.2, pp. 173-190, 2009, DOI:10.3970/cmes.2009.043.173

    Abstract In this paper, a new time-like function with the incorporation of the fictitious time integration method (FTIM) is proposed. The new time-like function is modified from the original time-like function in the FTIM by adding a control parameter m, which dramatically improves the performance of the FTIM for solving highly nonlinear boundary value problems (BVPs) and plays as an important controller to assure the convergence of the solution during the time integration process. The requirements and the characteristics of the new time-like function are presented by examining the FTIM through the perspective of the new time-like function in which the… More >

  • Open Access

    ARTICLE

    Hierarchical Adaptive Cross Approximation GMRES Technique for Solution of Acoustic Problems Using the Boundary Element Method

    A. Brancati1, M. H. Aliabadi1, I. Benedetti1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.2, pp. 149-172, 2009, DOI:10.3970/cmes.2009.043.149

    Abstract In this paper a new Rapid Acoustic Boundary Element Method (RABEM) is presented using a Hierarchical GMRES solver for 3D acoustic problems. The Adaptive Cross Approximation is used to generate both the system matrix and the right hand side vector. The ACA is also used to evaluate the potential and the particle velocity values at selected internal points. Two different GMRES solution strategies (without preconditioner and with a block diagonal preconditioner) are developed and tested for low and high frequency problems. Implementation of different boundary conditions (i.e. Dirichlet, Neumann and mixed Robin) is also described. The applications presented include the… More >

  • Open Access

    ARTICLE

    An Inverse Problem for the General Kinetic Equation and a Numerical Method

    Arif Amirov1, Fikret Gölgeleyen1, Ayten Rahmanova2

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.2, pp. 131-148, 2009, DOI:10.3970/cmes.2009.043.131

    Abstract This paper has two purposes. The first is to prove existence and uniqueness theorems for the solution of an inverse problem for the general linear kinetic equation with a scattering term. The second one is to develop a numerical approximation method for the solution of this inverse problem for two dimensional case using finite difference method. More >

  • Open Access

    ARTICLE

    Evaluations of Turbulence Models for Highly Swirling Flows in Cyclones

    I. Karagoz, F.Kaya

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.2, pp. 111-130, 2009, DOI:10.3970/cmes.2009.043.111

    Abstract The aim of this work is to investigate the suitability of various turbulence models and their options for highly complex swirling flows in tangential inlet cyclones. Three-dimensional, steady governing equations for the incompressible, turbulent flow inside the cyclone are solved numerically. The prediction performance of three popular turbulence models and various options available for these models was evaluated by comparing the computed velocity profiles and pressure drop with the experimental data given in the literature. Results obtained from the numerical tests have demonstrated that the swirl factor for the RNG k-emodel has considerably influence on the prediction performance of the… More >

  • Open Access

    ARTICLE

    Matching Contours in Images through the use of Curvature, Distance to Centroid and Global Optimization with Order-Preserving Constraint

    Francisco P. M. Oliveira1, João Manuel R. S. Tavares1

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.1, pp. 91-110, 2009, DOI:10.3970/cmes.2009.043.091

    Abstract This paper presents a new methodology to establish the best global match of objects' contours in images. The first step is the extraction of the sets of ordered points that define the objects' contours. Then, by using the curvature value and its distance to the corresponded centroid for each point, an affinity matrix is built. This matrix contains information of the cost for all possible matches between the two sets of ordered points. Then, to determine the desired one-to-one global matching, an assignment algorithm based on dynamic programming is used. This algorithm establishes the global matching of the minimum global… More >

  • Open Access

    ARTICLE

    Vibration suppression of a moving beam subjected to an active-control electrostatic force

    Shueei-Muh Lin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.1, pp. 73-90, 2009, DOI:10.3970/cmes.2009.043.073

    Abstract In this study, the mathematical model of a moving beam is established. This model is composed of a governing differential equation and three homogenous boundary conditions and one non-homogenous boundary condition including a time-dependent inertia force and a nonlinear active control force. Obviously, a moving mass problem with nonlinear and time dependent boundary condition is very complicated. One solution method is here developed to derive the exact solution for this system. By taking a change of dependent variable with a shifting function the original system is transformed to be a system composed of one non-homogeneous governing differential equation and four… More >

  • Open Access

    ARTICLE

    Derivation of a Bilayer Model for Shallow Water Equations with Viscosity. Numerical Validation

    G. Narbona-Reina1, J.D.D. Zabsonré2, E.D. Fernández-Nieto1, D. Bresch3

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.1, pp. 27-72, 2009, DOI:10.3970/cmes.2009.043.027

    Abstract In this work we present a new two-dimensional bilayer Shallow-Water model including viscosity and friction effects on the bottom and interface level. It is obtained following [Gerbeau and Perthame (2001)] from an asymptotic analysis of non-dimensional and incompressible Navier-Stokes equations with hydrostatic approximation. In order to obtain the viscosity effects into the model we must have into account a second order approximation. To evaluate this model we perform two numerical tests consisting of an internal dam-break problem for both, one and two dimensional cases. In the first one we make a comparison between the model obtained and the Navier-Stokes simulation. More >

  • Open Access

    ARTICLE

    Adaptive Support Domain Implementation on the Moving Least Squares Approximation for Mfree Methods Applied on Elliptic and Parabolic PDE Problems Using Strong-Form Description

    G. C. Bourantas1, E. D. Skouras2,3,4, G. C. Nikiforidis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.1, pp. 1-26, 2009, DOI:10.3970/cmes.2009.043.001

    Abstract The extent of application of meshfree methods based on point collocation (PC) techniques with adaptive support domain for strong form Partial Differential Equations (PDE) is investigated. The basis functions are constructed using the Moving Least Square (MLS) approximation. The weak-form description of PDEs is used in most MLS methods to circumvent problems related to the increased level of resolution necessary near natural (Neumann) boundary conditions (BCs), dislocations, or regions of steep gradients. Alternatively, one can adopt Radial Basis Function (RBF) approximation on the strong-form of PDEs using meshless PC methods, due to the delta function behavior (exact solution on nodes).… More >

Displaying 3231-3240 on page 324 of 3722. Per Page