Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (315)
  • Open Access

    ARTICLE

    Mechanical Experimental Study on Tensile Bolted Connections of Crosslaminated Timber

    Chenxiao Su, Haibei Xiong*

    Structural Durability & Health Monitoring, Vol.14, No.1, pp. 81-94, 2020, DOI:10.32604/sdhm.2020.08221

    Abstract In order to explore a kind of high-strength, earthquake-resistant, economical and suitable connection, 4 groups of cross-laminated timber wall-to-floor and wall-to-wall bolted connections were tested under monotonic and cyclic loading. The deformation characteristics and failure modes of the cross-laminated timber wall-to-floor and wall-to-wall bolted connections were exploited. Load-slip curves, bearing capacity, yielding point, stiffness and ductility of each group of specimens were analyzed. The test results indicate that the loading process of cross-laminated timber bolted connections under tension can be categorized as five stages, namely the elastic stage, the slip stage, the embedding stage, the yielding stage and the ultimate… More >

  • Open Access

    ARTICLE

    Fatigue Performance Analysis and Evaluation for Steel Box Girder Based on Structural Health Monitoring System

    Meiling Zhuang1,2,3, Changqing Miao1,2,*, Rongfeng Chen1,2

    Structural Durability & Health Monitoring, Vol.14, No.1, pp. 51-79, 2020, DOI:10.32604/sdhm.2020.07663

    Abstract Taizhou Yangtze River Bridge as a long-span suspension bridge, the finite element model (FEM) of it is established using the ANSYS Software. The beam4 element is used to simulate the main beam to establish the “spine beam” model of the Taizhou Yangtze River Bridge. The calculated low-order vibration mode frequency of the FEM is in good agreement with the completion test results. The model can simulate the overall dynamic response of the bridge. Based on the vehicle load survey, the Monte Carlo method is applied to simulate the traffic load flow. Then the overall dynamic response analysis of FEM is… More >

  • Open Access

    ARTICLE

    Finite Element Analysis on Vibration Characteristics of an Offshore Floating Breakwater

    Hongyi Yan1, Dingguo Zhang1, Liang Li1,*, Xiaoyu Luo2

    Structural Durability & Health Monitoring, Vol.14, No.1, pp. 19-36, 2020, DOI:10.32604/sdhm.2020.07457

    Abstract The construction of seaside facilities is a hot topic in the field of ocean engineering. In this paper, a new type of floating breakwater is designed by 3DCAD geometric modeling. Based on the vibration theory and finite element technology, the floating breakwater model is optimized, and the modal analysis of the structure with the bracket as main body and blades as functional attachments is carried out. Natural frequencies and mode shapes of the blades are first calculated, and the effects of the natural frequencies in both dry and wet conditions are taken into account. Modal analysis and harmonic response analysis… More >

  • Open Access

    ARTICLE

    Kinematic Analysis and Rock Mass Classifications for Rock Slope Failure at USAID Highways

    Ibnu Rusydy1,3,*, Nafisah Al-Huda1,2, M. Fahmi4, Naufal Effendi4

    Structural Durability & Health Monitoring, Vol.13, No.4, pp. 379-398, 2019, DOI:10.32604/sdhm.2019.08192

    Abstract Rock slope kinematic analysis and rock mass classifications has been conducted at the 17th km to 26th km of USAID (United States Agency for International Development) highway in Indonesia. This research aimed to examine the type of rock slope failures and the quality of rock mass as well. The scan-line method was performed in six slopes by using a geological compass to determine rock mass structure on the rock slope, and the condition of joints such as persistence, aperture, roughness, infilling material, weathering and groundwater conditions. Slope kinematic analysis was performed employing a stereographic projection. The rock slope quality and… More >

  • Open Access

    ARTICLE

    Seismic Reliability Assessment of Inelastic SDOF Systems Subjected to Near-Fault Ground Motions Considering Pulse Occurrence

    Jilei Zhou1,*, Chuansong Sun1, Xiangjun Dai1, Guohai Chen2

    Structural Durability & Health Monitoring, Vol.13, No.4, pp. 361-378, 2019, DOI:10.32604/sdhm.2019.05171

    Abstract The ground motions in the orientation corresponding to the strongest pulse energy impose more serious demand on structures than that of ordinary ground motions. Moreover, not all near-fault ground motion records present distinct pulses in the velocity time histories. In this paper, the parameterized stochastic model of near-fault ground motion with the strongest energy and pulse occurrence probability is suggested, and the Monte Carlo simulation (MSC) and subset simulation are utilized to calculate the first excursion probability of inelastic single-degree-of-freedom (SDOF) systems subjected to these types of near-fault ground motion models, respectively. Firstly, the influences of variation of stochastic pulse… More >

  • Open Access

    ARTICLE

    Fiber Grating-Based Strain Sensor Array for Health Monitoring of Pipelines

    Hui Wang1, Songyou Li2, Lei Liang3,*, Gang Xu4,5, Bin Tu6

    Structural Durability & Health Monitoring, Vol.13, No.4, pp. 347-359, 2019, DOI:10.32604/sdhm.2019.05139

    Abstract Pipelines are one of the most important modern energy transportation methods, used especially for the transportation of certain dangerous energy media materials such as crude oil, natural gas, and chemical raw materials. New requirements have been put forward for the health monitoring and early security warning of pipelines because of the large-scale and complicated development trend of the pipe network system. To achieve an accurate assessment of the health conditions of pipeline infrastructure, obtaining as many precise operating parameters as possible, particularly at some critical parts of the pipeline, is necessary. Therefore, a novel type of fiber grating strain sensor… More >

  • Open Access

    ARTICLE

    Nonlinear Micromechanical Modelling of Transverse Tensile Damage Behavior in Fiber-Reinforced Polymer Composites

    Nian Li*

    Structural Durability & Health Monitoring, Vol.13, No.4, pp. 331-346, 2019, DOI:10.32604/sdhm.2019.07521

    Abstract The investigation focusing on the mechanical behaviors at the microstructural level in composite materials can provide valuable insight into the failure mechanisms at larger scales. A micromechanics damage model which comprises the coupling of the matrix constitutive model and the cohesive zone (CZM) model at fiber-matrix interfaces is presented to evaluate the transverse tensile damage behaviors of unidirectional (UD) fiber-reinforced polymer (FRP) composites. For the polymeric matrix that exhibits highly non-linear mechanical responses, special focus is paid on the formulation of the constitutive model, which characterizes a mixture of elasticity, plasticity as well as damage. The proposed constitutive model includes… More >

  • Open Access

    ARTICLE

    Comparative Study on Tree Classifiers for Application to Condition Monitoring of Wind Turbine Blade through Histogram Features Using Vibration Signals: A Data-Mining Approach

    A. Joshuva1,*, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.13, No.4, pp. 399-416, 2019, DOI:10.32604/sdhm.2019.03014

    Abstract Wind energy is considered as a alternative renewable energy source due to its low operating cost when compared with other sources. The wind turbine is an essential system used to change kinetic energy into electrical energy. Wind turbine blades, in particular, require a competitive condition inspection approach as it is a significant component of the wind turbine system that costs around 20-25 percent of the total turbine cost. The main objective of this study is to differentiate between various blade faults which affect the wind turbine blade under operating conditions using a machine learning approach through histogram features. In this… More >

  • Open Access

    ARTICLE

    Classifying Machine Learning Features Extracted from Vibration Signal with Logistic Model Tree to Monitor Automobile Tyre Pressure

    P. S. Anoop1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.11, No.2, pp. 191-208, 2017, DOI:10.3970/sdhm.2017.011.191

    Abstract Tyre pressure monitoring system (TPMS) is compulsory in most countries like the United States and European Union. The existing systems depend on pressure sensors strapped on the tyre or on wheel speed sensor data. A difference in wheel speed would trigger an alarm based on the algorithm implemented. In this paper, machine learning approach is proposed as a new method to monitor tyre pressure by extracting the vertical vibrations from a wheel hub of a moving vehicle using an accelerometer. The obtained signals will be used to compute through statistical features and histogram features for the feature extraction process. The… More >

  • Open Access

    ARTICLE

    Analysis of the Properties and Anti-Seepage Mechanism of PBFC Slurry in Landfill

    Guozhong Dai1,*, Jia Zhu2, Guicai Shi3, Yanmin Sheng4, Shujin Li5

    Structural Durability & Health Monitoring, Vol.11, No.2, pp. 169-190, 2017, DOI:10.3970/sdhm.2017.011.169

    Abstract As the landfill leachate has strong pollution on the underground water, surface water and soil. This paper develops the formula of impervious slurry with low permeability, good durability, strong adsorption and retardant based on the bentonite which is modified by polyvinyl alcohol. Through the simulation experiment, the optimum formula of polyvinyl alcohol is 0.2%. Its osmotic coefficient for 28 days is 0.53×10-8~1.86×10-8 cm/s and compressive strength is 0.5~1.5 MPa as well. This paper study on the retardant rule of the consolidation of slurry against the pollution in the leachate by self-made percolation instrument. The experiment shows that the retardant rate… More >

Displaying 101-110 on page 11 of 315. Per Page