Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,132)
  • Open Access

    ARTICLE

    Synthesis and Properties of Rosin-Based Composite Acrylamide Hydrogels

    Shuangsheng Zhang, Bin Sun, Siyu Li, Xiangyu Lin, Muhua Chen*, Xu Xu*

    Journal of Renewable Materials, Vol.11, No.2, pp. 853-865, 2023, DOI:10.32604/jrm.2022.022901

    Abstract Hydrogels have been widely applied in agricultural drought-resistance, pollution regulation, drug delivery and so on. Acrylamide (AM) is usually used as raw material to synthesize acrylamide hydrogels. However, inherently low mechanical strength greatly limits their applications in some special areas. Therefore, it is necessary to choose suitable functional monomers to optimize acrylamide hydrogels and improve their mechanical performances. In this paper, a novel acrylamide monomer modified by rosin was synthesized, and then polyacrylamide/rosin-based acrylamide (RAM) composite hydrogels were prepared via free radical polymerization using potassium persulfate as initiator, N, N′-methylene-bisacrylamide (MBA) as a crosslinker. The influence of RAM monomer was… More > Graphic Abstract

    Synthesis and Properties of Rosin-Based Composite Acrylamide Hydrogels

  • Open Access

    ARTICLE

    CO2-Responsive Smart Foams Stabilized by an Extremely Rigid Bio-Based Surfactant

    Weishan Tang, Xin Feng, Caiyun Lin, Xiaoping Rao*

    Journal of Renewable Materials, Vol.11, No.2, pp. 523-538, 2023, DOI:10.32604/jrm.2022.022809

    Abstract Environment friendly and intelligent surfactants have attracted great attention in recent years. A bio-based CO2 responsive surfactant rosin acid dimaleimide choline (R-BMI-C) with an extremely rigid skeleton was prepared using rosin and choline as raw materials by Diels-Alder addition reaction and acid-base neutralization reactions. Its structure was confirmed by IR and 1H NMR spectra. The foams’ properties of R-BMI-C could be adjusted by bubbling CO2/N2 to change the structure of the surfactant. At pH 10.4, R-BMI-C forms an unstable foam with a half-life of 1.5 h. When the pH was reduced to 7.4 by bubbling CO2, R-BMI-C forms an extremely… More > Graphic Abstract

    CO<sub>2</sub>-Responsive Smart Foams Stabilized by an Extremely Rigid Bio-Based Surfactant

  • Open Access

    ARTICLE

    Controlled-Release of Plant Volatiles: New Composite Materials of Porous Carbon-Citral and Their Fungicidal Activity against Exobasidium vexans

    Yaoguo Liu1, Yao Chen2, Huifang Liu2, Wei Chen1, Zhiwei Lei2, Chiyu Ma2, Jie Yin1, Wen Yang2,*

    Journal of Renewable Materials, Vol.11, No.2, pp. 811-823, 2023, DOI:10.32604/jrm.2022.022594

    Abstract Citral (Eo) exhibits excellent fungicidal activities. However, it is difficult to maintain long-term fungicidal activity due to its strong volatility. Herein, a controlled-release strategy by using biomass-derived porous carbon (BC) was developed to overcome the drawback of Eo. New composite materials were prepared by loading Eo on tea stem porous carbon (BC@Eo), and their controlled-release fungicidal activity against Exobasidium vexans was assessed. BC with a large specific surface area of 1001.6 m2/g and mesoporous structure was fabricated through carbonization temperature of 700°C. The BC@Eo materials were characterized using Fourier-transform infrared spectroscopy and X-ray powder diffraction. The results suggested that chemical… More > Graphic Abstract

    Controlled-Release of Plant Volatiles: New Composite Materials of Porous Carbon-Citral and Their Fungicidal Activity against <i>Exobasidium vexans</i>

  • Open Access

    ARTICLE

    Study on the Hydration and Physical Properties of Cement by M18 Polycarboxylate Superplasticizer Modified Graphene Oxide

    Dalong Liao, Dongxu Li*, Shun Zhou, Xiaotao Zhang, Ying Fang*

    Journal of Renewable Materials, Vol.11, No.2, pp. 625-641, 2023, DOI:10.32604/jrm.2022.022501

    Abstract Graphene oxide (GO) as a new nano-enhancer in cement-based materials has gained wide attention. However, GO is easy to aggregate in alkaline cement mortar with poor dispersibility. This hinders its application in practical infrastructure construction. In this work, GO-M18 polycarboxylate compound superplasticizer (GM) were obtained by compounding the M18 polycarboxylate superplasticizer with GO solution at different mass ratios. The dispersion of GM in alkaline solution was systematically studied. The phases and functional groups of GM were characterized by XRD and FTIR. The effects of GM on the cement mortar hydration and the formation of microstructure were investigated by measuring the… More > Graphic Abstract

    Study on the Hydration and Physical Properties of Cement by M18 Polycarboxylate Superplasticizer Modified Graphene Oxide

  • Open Access

    REVIEW

    Research and Application Progress of Straw

    Ben Chen1,2, Sarah Mohrmann1,2, Haitao Li1,2,*, Milan Gaff3, Rodolfo Lorenzo4, Ileana Corbi5, Ottavia Corbi5, Kaidong Fang6, Min Li6

    Journal of Renewable Materials, Vol.11, No.2, pp. 599-623, 2023, DOI:10.32604/jrm.2022.022452

    Abstract Straw is a general term for the stem and leaf parts of mature crops, and is a multi-purpose renewable biomass energy resource in the agricultural ecosystem. The prospect of comprehensive utilization of straw has become broad with the development of agricultural production, the advancement of science and technology, and the improvement of the level of agricultural mechanization. The comprehensive utilization of straw plays an important role in enhancing the sustainable development ability of agricultural economy and improving the current situation of comprehensive utilization of agricultural resources in my country. This paper briefly combs the development history of straw and the… More >

  • Open Access

    ARTICLE

    Preparation and Performance of n-Dodecane Microencapsulated Phase Change Cold Storage Materials

    Pan Zhang, Lingling Xu*, Xin Shi, Zemeng Guo, Jiajia Cheng

    Journal of Renewable Materials, Vol.11, No.2, pp. 689-705, 2023, DOI:10.32604/jrm.2022.022232

    Abstract Cold chain transportation is currently a hot research topic. Since the traditional refrigeration methods lead to the consumption of large amounts of energy, the search for new energy storage materials is a major trend. In the present contribution, n-dodecane/PMMA microencapsulated phase change materials were prepared by suspension polymerization for ice-temperature cold chain transportation and their preparation parameters were explored using the encapsulation ratio as optimization indicator. The results show that the n-dodecane-containing microcapsules have a maximum encapsulation ratio of 93.2% when using a core-to-wall ratio of 3:1, 5% of emulsifier, 30% of crosslinker, and 2000 rpm of emulsification speed. The phase… More >

  • Open Access

    ARTICLE

    Analysis of the Relationship between Mechanical Properties and Pore Structure of MSW Incineration Bottom Ash Fine Aggregate Concrete after Freeze-Thaw Cycles Based on the Gray Theory

    Peng Zhang1, Dongsheng Shi1,*, Ping Han1,2, Wenchao Jiang1,3

    Journal of Renewable Materials, Vol.11, No.2, pp. 669-688, 2023, DOI:10.32604/jrm.2022.022192

    Abstract The destruction of concrete building materials in severely cold regions of the north is more severely affected by freeze-thaw cycles, and the relationship between the mechanical properties and pore structure of concrete with fine aggregate from municipal solid waste (MSW) incineration bottom ash after freeze-thaw cycles is analyzed under the degree of freeze-thaw hazard variation. In this paper, the gray correlation method is used to calculate the correlation between the relative dynamic elastic modulus, compressive strength, and microscopic porosity parameters to speculate on the most important factors affecting their changes. The GM (1,1) model was established based on the compressive… More >

  • Open Access

    ARTICLE

    Mechanical Test and Meso-Model Numerical Study of Composite Rubber Concrete under Salt-Freezing Cycle

    Mingkai Sun1,*, Yanan Wang2, Pingwei Jiang1, Zerong Song3, Zhan Gao4, Jiaming Xu5

    Journal of Renewable Materials, Vol.11, No.2, pp. 643-668, 2023, DOI:10.32604/jrm.2022.022168

    Abstract A composite rubber concrete (CRC) was designed by combining waste tire rubber particles with particle sizes of 3~5 mm, 1~3 mm and 20 mesh. Taking the rubber content of different particle sizes as the influencing factors, the range and variance analysis of the mechanical and impermeability properties of CRC was carried out by orthogonal test. Through analysis, it is concluded that the optimal proportion of 3~5 mm, 1~3 mm, and 20 mesh particle size composite rubber is 1:2.5:5. 5 kinds of CRC and 3 kinds of ordinary single-mixed rubber concrete (RC) with a total content of 10%~20% were designed under… More >

  • Open Access

    ARTICLE

    Mechanical Properties of Self-Compacting Rubberized Concrete with Different Rubber Types under Triaxial Compression

    Chunli Meng1, Weishu Fu1,*, Jianzeng Shen2,*, Yisheng Su1,2, Chunying Ye1

    Journal of Renewable Materials, Vol.11, No.2, pp. 581-598, 2023, DOI:10.32604/jrm.2022.022074

    Abstract Different rubber aggregates lead to changes in the effect of stress conditions on the mechanical behavior of concrete, and studies on the triaxial properties of self-compacting rubber concrete (SCRC) are rare. In this study, 35 cylindrical specimens taking lateral stress and rubber type as variables were prepared to study the fresh properties and mechanical behaviors of SCRC under triaxial compression, where the rubber contains two types, i.e., 380 μm rubber powder and 1–4 mm rubber particles, and four contents, i.e., 10%, 20% and 30%. The test results demonstrated that SCRC exhibited a typical oblique shear failure mode under triaxial compression… More > Graphic Abstract

    Mechanical Properties of Self-Compacting Rubberized Concrete with Different Rubber Types under Triaxial Compression

  • Open Access

    ARTICLE

    Causes of the Water Resistance of Welded Joints of Paduk Wood (Pterocarpus soyauxii Taub.)

    T. Ganier, J. Hu, A. Pizzi*

    Journal of Renewable Materials, Vol.1, No.1, pp. 79-82, 2013, DOI:10.7569/JRM.2012.634101

    Abstract Linear vibration welding of extractive rich Paduk wood from central Africa containing a high proportion of a native mixture of water-insoluble extractives, or of low water solubility, has been shown to yield joints of much upgraded water resistance. This has been shown to be due to the protecting infl uence the extractives from the wood itself has on the welded interphase, due to their inherent water repellence. Joints of unusually high percentage wood failure but modest strength were obtained; Paduk wood brittleness apparently yielding weld line strengths always higher than that of the surrounding wood itself. This indicated that Paduk… More >

Displaying 241-250 on page 25 of 1132. Per Page