Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,132)
  • Open Access

    ARTICLE

    Study on the Durability of Recycled Powder Concrete against Sulfate Attack under Partial Immersion Condition

    Hualei Bai1,2, Ying Li1,2,*, Dahu Dai1,2

    Journal of Renewable Materials, Vol.10, No.11, pp. 3059-3078, 2022, DOI:10.32604/jrm.2022.020148

    Abstract In order to make full use of waste recycled fine powder (RFP) in concrete and achieve the goal of carbon neutrality in the concrete industry, the durability of sulfate resistance is an important aspect of evaluating the performance of recycled powder concrete (RPC). Therefore, the durability of RPC under partial sulfate immersion was studied to provide theoretical guidance for understanding the erosion mechanism of RPC. The compressive strength, mass loss, and microstructure change patterns of RPC under partial immersion of 5% Na2SO4 and MgSO4 solutions were analyzed by cubic compressive strength, mass loss rate, SEM-EDS, and XRD. The results showed… More >

  • Open Access

    ARTICLE

    Fabrication of Baking-Free Bricks Using Gold Tailings and Cemented Materials with Low Alkalinity

    Jiamao Li1,2,*, Tao Si1, Lin Li1, Chuangang Fan1,*, Zhaofang He3, Yuandi Qian3

    Journal of Renewable Materials, Vol.10, No.11, pp. 3041-3058, 2022, DOI:10.32604/jrm.2022.020054

    Abstract The purpose of this paper was using gold mine tailings and cemented materials with low alkalinity to fabricate baking-free bricks. The obtained baking-free brick samples were evaluated by unconfined compressive strength (UCS), water absorption percentage, freezing-thawing cycle, and drying-wetting cycle. The microstructures of the baking-free brick samples were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. The baking-free brick specimens cured for 28 days with the addition of 10% mixing water consumption and 1:6 cement/tailing ratio tended to obtain favorable comprehensive properties such as a high compressive strength of 15.15 MPa, a low water absorption percentage of… More > Graphic Abstract

    Fabrication of Baking-Free Bricks Using Gold Tailings and Cemented Materials with Low Alkalinity

  • Open Access

    ARTICLE

    Utilization of Dredged River Sediment in Preparing Autoclaved Aerated Concrete Blocks

    Kai Zhang1,2, Qunshan Wei1,2,*, Shuai Jiang3, Zhemin Shen4, Yanxia Zhang1,2, Rui Tang1,2, Aiwu Yang1,2, Christopher W. K. Chow5

    Journal of Renewable Materials, Vol.10, No.11, pp. 2989-3008, 2022, DOI:10.32604/jrm.2022.019821

    Abstract In this study, the dredged river sediment, soft texture and fine particles, is mixed with other materials and transformed into eco-friendly autoclaved aerated concrete (hereinafter referred to as AAC) blocks. The results indicated the bricks produced under the conditions of 30%–34% dredged river sediment, 24% cement, 10% quick lime, 30% fly ash, 2% gypsum and 0.09% aluminum powder with 0.5 water to material ratio, 2.2 MPa autoclave pressure and 6 h autoclave time, the average compressive strength of 4.5 MPa and average dry density of 716.56 kg/m³ were obtained, the two parameters (strength & density) both met the requirement of… More >

  • Open Access

    ARTICLE

    Biocomposites of Polylactic Acid Reinforced by DL-Lactic Acid-Grafted Microfibrillated Cellulose

    Chaodong Liu, Yutong Yang, Boyu Cui, Weihong Wang*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2961-2972, 2022, DOI:10.32604/jrm.2022.019761

    Abstract Microfibrillated cellulose (MFC) is often added to polylactic acid (PLA) matrixes as a reinforcing filler to obtain fully-biodegradable composites with improved mechanical properties. However, the incompatibility between MFC and the PLA matrix limits the mechanical performance of MFC-reinforced PLA composites. In this paper, DL-lactic acid-grafted-MFC (MFC-g-DL) was used to improve the compatibility with PLA. Reinforced composites were prepared by melt extrusion and hot-cold pressing. The tensile strength of the PLA/MFC-g-DL composite increased by 22.1% compared with that of PLA after adding 1% MFC-g-DL. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and dynamic thermomechanical analysis (DMA) were used to explore… More > Graphic Abstract

    Biocomposites of Polylactic Acid Reinforced by DL-Lactic Acid-Grafted Microfibrillated Cellulose

  • Open Access

    ARTICLE

    Environmental Protection and Energy Color Changing Clothing Design under the Background of Sustainable Development

    Jingyu Dai1,*, Hongyu Dai2, Yutong Xie3, T. Indumathi4

    Journal of Renewable Materials, Vol.10, No.11, pp. 2717-2728, 2022, DOI:10.32604/jrm.2022.019735

    Abstract In order to promote the application of clean energy technology in clothing and promote the integration of industrial development and artificial intelligence wearable technology, this study elaborates the energy application characteristics of intelligent wearable products at home and abroad and its application in different fields, aiming at the current research status of wearable technology in the field of textile and clothing. The wearable distributed generation technology is classified, and a creative clothing design for detecting climate temperature is designed. Based on the monitoring of body temperature, the changes in clothing pattern color can reflect people’s health and emotional status. At… More >

  • Open Access

    ARTICLE

    Study on the Properties of Esterified Corn Starch/Polylactide Biodegradable Blends

    Yongjie Zheng1,2,3,*, Mingjian Xu1, Jingzhi Tian1, Meihong Yu1, Bin Tan4, Hong Zhao2,3,*, Yin Tang2,3

    Journal of Renewable Materials, Vol.10, No.11, pp. 2949-2959, 2022, DOI:10.32604/jrm.2022.019702

    Abstract Fully bio-based and biodegradable starch/polylactic acid blends have received increasing attentions for their biodegradability and potential to offset the use of unsustainable fossil resources, specifically, their application in packaging. Herein, corn starch was first esterified with maleic anhydride and then compounded with polylactide (PLA) to prepare esterified corn starch/polylactic acid blends with starch content up to 35 wt%. The structures, morphologies, thermal and mechanical properties of starch or blends were investigated. The results showed that corn starch was successfully grafted with maleic anhydride, which showed increased crystallinity and particle size than native starch. Esterified corn starch/polylactic acid blends showed good… More >

  • Open Access

    ARTICLE

    Effect of MMT on Flame Retardancy of PLA/IFR/LDH Composites

    Ping Zhang, Siyu Gan, Lin Chen*, Hao Chen, Chunhui Jia, Yingke Fu, Ying Xiong*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2937-2947, 2022, DOI:10.32604/jrm.2022.019590

    Abstract Nano filler synergistic intumescent flame retardant (IFR) system is an effective way to improve the flame retardant properties of polymer. In this study, the effects of montmorillonite (MMT) on the flame retardant properties of polylactic acid/layered double hydroxides (PLA/LDH) and PLA/IFR/LDH were investigated. The results show that both LDH and LDH/IFR can reduce the peak heat release rate (HRR) of PLA and prolong the combustion time of PLA; When a proportionate MMT is introduced into PLA/LDH and PLA/IFR/LDH systems, respectively, MMT will not only affect the degradation process of PLA composites during combustion, but also the PLA composites can form… More >

  • Open Access

    ARTICLE

    Effects of Porous Graphene on LiOH Based Composite Materials for Low Temperature Thermochemical Heat Storage

    Lisheng Deng1,2, Hongyu Huang2,*, Zhaohong He2, Shijie Li2, Zhen Huang2, Mitsuhiro Kubota3, You Zhou4,*, Dezhen Chen1

    Journal of Renewable Materials, Vol.10, No.11, pp. 2895-2906, 2022, DOI:10.32604/jrm.2022.019071

    Abstract Thermochemical heat storage material inorganic hydrate LiOH is selected as a promising candidate material for storing low-temperature heat energy because of its high energy density (1440 kJ/kg) and mild reaction process. However, the low hydration rate of LiOH limits the performance of low temperature thermochemical heat storage system as well as the thermal conductivity. In this study, porous-graphene/LiOH composite thermochemical heat storage materials with strong water sorption property and higher thermal conductivity were synthesized by hydrothermal process. The experimental results show that the hydration rate of the composites was greatly improved. The heat storage density of the composite materials was… More >

  • Open Access

    ARTICLE

    Study on the Structural Characteristics and Physical and Mechanical Properties of Phoebe bournei Thinning Wood

    Jiabiao Wu, Jiayin Liang, Muyang Chen, Siqi Zheng, Jianying Xu*

    Journal of Renewable Materials, Vol.10, No.11, pp. 3025-3039, 2022, DOI:10.32604/jrm.2022.019989

    Abstract The artificial afforestation of precious Phoebe bournei has been carried out in China. During the cultivation process, thinning wood will be produced. The properties of thinning wood might vary greatly with matured wood and require evaluation for better utilization. The objective of the present study aims to determine the wood structure, fiber morphology, and physical and mechanical properties of the Phoebe bournei thinning wood to help us understand the wood properties and improve its utility value. Three 14-year-old Phoebe bournei were cut from Jindong Forestry Farm of Hunan Province, China. The wood structure and fiber morphology were observed and analyzed… More > Graphic Abstract

    Study on the Structural Characteristics and Physical and Mechanical Properties of <i>Phoebe bournei</i> Thinning Wood

  • Open Access

    ARTICLE

    Formaldehyde Free Renewable Thermosetting Foam Based on Biomass Tannin with a Lignin Additive

    Bowen Liu1, Yunxia Zhou1, Hisham Essawy2, Shang Feng1, Xuehui Li1, Jingjing Liao1, Xiaojian Zhou1,3,*, Jun Zhang1,*, Sida Xie1

    Journal of Renewable Materials, Vol.10, No.11, pp. 3009-3024, 2022, DOI:10.32604/jrm.2022.019848

    Abstract This study presents easily prepared free formaldehyde bio-based foam based on a prepared thermosetting resin comprising tannin–lignin–furfuryl alcohol-glyoxal (TLFG) via mechanical stirring in presence of ether as a foaming agent. The foam was developed through a co-polycondensation reaction of glyoxal and furfuryl alcohol with condensed tannin and lignin, which is a forest-derived product. Investigation using scanning electron microscopy (SEM) showed more closed-cell structure without cracks and collapse in the TLFG foam, with a higher apparent density with respect to tannin–furanic–formaldehyde (TFF) foam. Differential scanning calorimetry (DSC), dynamic thermomechanical analysis (DTMA), and thermogravimetric analysis (TGA) investigations revealed that the curing process… More >

Displaying 421-430 on page 43 of 1132. Per Page