Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,233)
  • Open Access

    ARTICLE

    Novel Time Series Bagging Based Hybrid Models for Predicting Historical Water Levels in the Mekong Delta Region, Vietnam

    Nguyen Thanh Hoan1, Nguyen Van Dung1, Ho Le Thu1, Hoa Thuy Quynh1, Nadhir Al-Ansari2,*, Tran Van Phong3, Phan Trong Trinh3, Dam Duc Nguyen4, Hiep Van Le4, Hanh Bich Thi Nguyen4, Mahdis Amiri5, Indra Prakash6, Binh Thai Pham4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1431-1449, 2022, DOI:10.32604/cmes.2022.018699

    Abstract Water level predictions in the river, lake and delta play an important role in flood management. Every year Mekong River delta of Vietnam is experiencing flood due to heavy monsoon rains and high tides. Land subsidence may also aggravate flooding problems in this area. Therefore, accurate predictions of water levels in this region are very important to forewarn the people and authorities for taking timely adequate remedial measures to prevent losses of life and property. There are so many methods available to predict the water levels based on historical data but nowadays Machine Learning (ML) methods are considered the best… More >

  • Open Access

    ARTICLE

    Weakly Singular Symmetric Galerkin Boundary Element Method for Fracture Analysis of Three-Dimensional Structures Considering Rotational Inertia and Gravitational Forces

    Shuangxin He1, Chaoyang Wang1, Xuan Zhou1,*, Leiting Dong1,*, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1857-1882, 2022, DOI:10.32604/cmes.2022.019160

    Abstract The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crackgrowth analysis of solid structures, because only boundary and crack-surface elements are needed. However, for engineering structures subjected to body forces such as rotational inertia and gravitational loads, additional domain integral terms in the Galerkin boundary integral equation will necessitate meshing of the interior of the domain. In this study, weakly-singular SGBEM for fracture analysis of three-dimensional structures considering rotational inertia and gravitational forces are developed. By using divergence theorem or alternatively the radial integration method, the domain integral terms caused by body forces are transformed… More >

  • Open Access

    ARTICLE

    A Personalized Comprehensive Cloud-Based Method for Heterogeneous MAGDM and Application in COVID-19

    Xiaobing Mao, Hao Wu, Shuping Wan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1751-1792, 2022, DOI:10.32604/cmes.2022.019501

    Abstract This paper proposes a personalized comprehensive cloud-based method for heterogeneous multi-attribute group decision-making (MAGDM), in which the evaluations of alternatives on attributes are represented by LTs (linguistic terms), PLTSs (probabilistic linguistic term sets) and LHFSs (linguistic hesitant fuzzy sets). As an effective tool to describe LTs, cloud model is used to quantify the qualitative evaluations. Firstly, the regulation parameters of entropy and hyper entropy are defined, and they are further incorporated into the transformation process from LTs to clouds for reflecting the different personalities of decision-makers (DMs). To tackle the evaluation information in the form of PLTSs and LHFSs, PLTS… More >

  • Open Access

    ARTICLE

    Aggregation Operators for Interval-Valued Pythagorean Fuzzy So Set with Their Application to Solve Multi-Attribute Group Decision Making Problem

    Rana Muhammad Zulqarnain1, Imran Siddique2, Aiyared Iampan3, Dumitru Baleanu4,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1717-1750, 2022, DOI:10.32604/cmes.2022.019408

    Abstract Interval-valued Pythagorean fuzzy so set (IVPFSS) is a generalization of the interval-valued intuitionistic fuzzy so set (IVIFSS) and interval-valued Pythagorean fuzzy set (IVPFS). The IVPFSS handled more uncertainty comparative to IVIFSS; it is the most signicant technique for explaining fuzzy information in the decision-making process. In this work, some novel operational laws for IVPFSS have been proposed. Based on presented operational laws, two innovative aggregation operators (AOs) have been developed such as interval-valued Pythagorean fuzzy so weighted average (IVPFSWA) and interval-valued Pythagorean fuzzy so weighted geometric (IVPFSWG) operators with their fundamental properties. A multi-attribute group decision-making (MAGDM) approach has been… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Reiner–Rivlin Nanofluid Flow under the Influence of Thermal Radiation and Activation Energy over a Rotating Disk

    Arfan Shahzad1,2, Muhammad Imran1,*, Muhammad Nawaz Naeem1, Mohsan Raza1

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1669-1692, 2022, DOI:10.32604/cmes.2022.017914

    Abstract In current study, the numerical computations of Reiner–Rivlin nanofluid flow through a rotational disk under the influence of thermal radiation and Arrhenius activation energy is considered. For innovative physical situations, the motile microorganisms are incorporated too. The multiple slip effects are considered in the boundary conditions. The bioconvection of motile microorganism is utilized alongside nanofluids to provide stability to enhanced thermal transportation. The Bioconvection pattern in various nanoparticles accredits novel applications of biotechnology like the synthesis of biological polymers, biosensors, fuel cells, petroleum engineering, and the natural environment. By deploying some suitable similarity transformation functions, the governing partial differential equations… More >

  • Open Access

    ARTICLE

    Modeling and Experimental Study for Automotive Dry Clutch Sliding Noise

    Jiali Yu, Zhili Xiang, Defeng Zhang, Yubing Gong*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1653-1667, 2022, DOI:10.32604/cmes.2022.019280

    Abstract Automotive dry clutches have been found to produce a low frequency sliding noise in many applications, which challenges the ride comfort of vehicles. In order to study this clutch sliding noise, a detailed finite element model including both a pressure plate assembly and a driven plate assembly was developed. Based on this model, a complex eigenvalue analysis is performed in this research. The effect of several major factors on the clutch sliding noise, such as the coefficient of friction, the clamping force, the geometric imperfection of the friction plate, and the thermal deformation of the pressure plate, were investigated numerically.… More >

  • Open Access

    ARTICLE

    A Cell-Based Linear Smoothed Finite Element Method for Polygonal Topology Optimization

    Changkye Lee1, Sundararajan Natarajan2, Seong-Hoon Kee3, Jurng-Jae Yee3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1615-1634, 2022, DOI:10.32604/cmes.2022.020377

    Abstract The aim of this work is to employ a modified cell-based smoothed finite element method (S-FEM) for topology optimization with the domain discretized with arbitrary polygons. In the present work, the linear polynomial basis function is used as the weight function instead of the constant weight function used in the standard S-FEM. This improves the accuracy and yields an optimal convergence rate. The gradients are smoothed over each smoothing domain, then used to compute the stiffness matrix. Within the proposed scheme, an optimum topology procedure is conducted over the smoothing domains. Structural materials are distributed over each smoothing domain and… More >

  • Open Access

    ARTICLE

    Deep-Learning-Based Production Decline Curve Analysis in the Gas Reservoir through Sequence Learning Models

    Shaohua Gu1,2, Jiabao Wang3, Liang Xue3,*, Bin Tu3, Mingjin Yang3, Yuetian Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1579-1599, 2022, DOI:10.32604/cmes.2022.019435

    Abstract Production performance prediction of tight gas reservoirs is crucial to the estimation of ultimate recovery, which has an important impact on gas field development planning and economic evaluation. Owing to the model’s simplicity, the decline curve analysis method has been widely used to predict production performance. The advancement of deep-learning methods provides an intelligent way of analyzing production performance in tight gas reservoirs. In this paper, a sequence learning method to improve the accuracy and efficiency of tight gas production forecasting is proposed. The sequence learning methods used in production performance analysis herein include the recurrent neural network (RNN), long… More >

  • Open Access

    ARTICLE

    Multi-Feature Fusion-Guided Multiscale Bidirectional Attention Networks for Logistics Pallet Segmentation

    Weiwei Cai1,2, Yaping Song1, Huan Duan1, Zhenwei Xia1, Zhanguo Wei1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1539-1555, 2022, DOI:10.32604/cmes.2022.019785

    Abstract In the smart logistics industry, unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans. Therefore, they play a critical role in smart warehousing, and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets. However, most current recognition algorithms are ineffective due to the diverse types of pallets, their complex shapes, frequent blockades in production environments, and changing lighting conditions. This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention (MFMBA) neural network for logistics pallet segmentation. To better predict… More >

  • Open Access

    ARTICLE

    Partitioning of Water Distribution Network into District Metered Areas Using Existing Valves

    Aniket N. Sharma1, Shilpa R. Dongre1, Rajesh Gupta1, Prerna Pandey1, Neeraj Dhanraj Bokde2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1515-1537, 2022, DOI:10.32604/cmes.2022.018867

    Abstract Water distribution network (WDN) leakage management has received increased attention in recent years. One of the most successful leakage-control strategies is to divide the network into District Metered Areas (DMAs). As a multi-staged technique, the generation of DMAs is a difficult task in design and implementation (i.e., clustering, sectorization, and performance evaluation). Previous studies on DMAs implementation did not consider the potential use of existing valves in achieving the objective. In this work, a methodology is proposed for detecting clusters and reducing the cost of additional valves and DMA sectorization by considering existing valves as much as possible. The procedure… More >

Displaying 8461-8470 on page 847 of 22233. Per Page