Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,360)
  • Open Access

    ARTICLE

    Theoretical Study on the Bilayer Buckling Technique for Thin Film Metrology

    Fei Jia1, Xiu-Peng Zheng1,2, Yan-Ping Cao1,3, Xi-Qiao Feng1

    CMC-Computers, Materials & Continua, Vol.18, No.2, pp. 105-120, 2010, DOI:10.3970/cmc.2010.018.105

    Abstract Recently, a novel technique based on the wrinkling of a bilayer composite film resting on a compliant substrate was proposed to measure the elastic moduli of thin films. In this paper, this technique is studied via theoretical analysis and finite element simulations. We find that under an applied compressive strain, the composite system may exhibit various buckling modes, depending upon the applied compressive strain, geometric and material parameters of the system. The physical mechanisms underlying the occurrence of the two most typical buckling modes are analyzed from the viewpoint of energy. When the intermediate layer is much thicker than the… More >

  • Open Access

    ARTICLE

    Simulation of Dendritic Growth with Different Orientation by Using the Point Automata Method

    A.Z. Lorbiecka1, B. Šarler1,2

    CMC-Computers, Materials & Continua, Vol.18, No.1, pp. 69-104, 2010, DOI:10.3970/cmc.2010.018.069

    Abstract The aim of this paper is simulation of thermally induced liquid-solid dendritic growth in two dimensions by a coupled deterministic continuum mechanics heat transfer model and a stochastic localized phase change kinetics model that takes into account the undercooling, curvature, kinetic and thermodynamic anisotropy. The stochastic model receives temperature information from the deterministic model and the deterministic model receives the solid fraction information from the stochastic model. The heat transfer model is solved on a regular grid by the standard explicit Finite Difference Method (FDM). The phase-change kinetics model is solved by the classical Cellular Automata (CA) approach and a… More >

  • Open Access

    ARTICLE

    The Time-Marching Method of Fundamental Solutions for Multi-Dimensional Telegraph Equations

    C.Y. Lin1, M.H. Gu1, D.L. Young1,2

    CMC-Computers, Materials & Continua, Vol.18, No.1, pp. 43-68, 2010, DOI:10.3970/cmc.2010.018.043

    Abstract The telegraph equations are solved by using the meshless numerical method called the time-marching method of fundamental solutions (TMMFS) in this paper. The present method is based on the method of fundamental solutions, the method of particular solutions and the Houbolt finite difference scheme. The TMMFS is a meshless numerical method, and has the advantages of no mesh building and numerical quadrature. Therefore in this study we eventually solved the multi-dimensional telegraph equation problems in irregular domain. There are totally six numerical examples demonstrated, in order they are one-dimensional telegraph equation, one-dimensional non-decaying telegraph problem, two-dimensional telegraph equation in irregular… More >

  • Open Access

    ARTICLE

    An Efficient Reliability-based Optimization Method for Uncertain Structures Based on Non-probability Interval Model

    C. Jiang1, Y.C. Bai1, X. Han1,2, H.M. Ning1

    CMC-Computers, Materials & Continua, Vol.18, No.1, pp. 21-42, 2010, DOI:10.3970/cmc.2010.018.021

    Abstract In this paper, an efficient interval optimization method based on a reliability-based possibility degree of interval (RPDI) is suggested for the design of uncertain structures. A general nonlinear interval optimization problem is studied in which the objective function and constraints are both nonlinear and uncertain. Through an interval order relation and a reliability-based possibility degree of interval, the uncertain optimization problem is transformed into a deterministic one. A sequence of approximate optimization problems are constructed based on the linear approximation technique. Each approximate optimization problem can be changed to a traditional linear programming problem, which can be easily solved by… More >

  • Open Access

    ARTICLE

    A Lie-Group Adaptive Method for Imaging a Space-Dependent Rigidity Coefficient in an Inverse Scattering Problem of Wave Propagation

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.18, No.1, pp. 1-20, 2010, DOI:10.3970/cmc.2010.018.001

    Abstract We are concerned with the reconstruction of an unknown space-dependent rigidity coefficient in a wave equation. This problem is known as one of the inverse scattering problems. Based on a two-point Lie-group equation we develop a Lie-group adaptive method (LGAM) to solve this inverse scattering problem through iterations, which possesses a special character that by using onlytwo boundary conditions and two initial conditions, as those used in the direct problem, we can effectively reconstruct the unknown rigidity function by aself-adaption between the local in time differential governing equation and the global in time algebraic Lie-group equation. The accuracy and efficiency… More >

  • Open Access

    ARTICLE

    On Solving the Direct/Inverse Cauchy Problems of Laplace Equation in a Multiply Connected Domain, Using the Generalized Multiple-Source-Point Boundary-Collocation Trefftz Method &Characteristic Lengths

    Weichung Yeih1, Chein-Shan Liu2, Chung-Lun Kuo3, Satya N. Atluri4

    CMC-Computers, Materials & Continua, Vol.17, No.3, pp. 275-302, 2010, DOI:10.3970/cmc.2010.017.275

    Abstract In this paper, a multiple-source-point boundary-collocation Trefftz method, with characteristic lengths being introduced in the basis functions, is proposed to solve the direct, as well as inverse Cauchy problems of the Laplace equation for a multiply connected domain. When a multiply connected domain with genus p (p>1) is considered, the conventional Trefftz method (T-Trefftz method) will fail since it allows only one source point, but the representation of solution using only one source point is impossible. We propose to relax this constraint by allowing many source points in the formulation. To set up a complete set of basis functions, we… More >

  • Open Access

    ARTICLE

    Stable Boundary and Internal Data Reconstruction in Two-Dimensional Anisotropic Heat Conduction Cauchy Problems Using Relaxation Procedures for an Iterative MFS Algorithm

    Liviu Marin1

    CMC-Computers, Materials & Continua, Vol.17, No.3, pp. 233-274, 2010, DOI:10.3970/cmc.2010.017.233

    Abstract We investigate two algorithms involving the relaxation of either the given boundary temperatures (Dirichlet data) or the prescribed normal heat fluxes (Neumann data) on the over-specified boundary in the case of the iterative algorithm of Kozlov91 applied to Cauchy problems for two-dimensional steady-state anisotropic heat conduction (the Laplace-Beltrami equation). The two mixed, well-posed and direct problems corresponding to every iteration of the numerical procedure are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is chosen according to the generalized cross-validation (GCV)… More >

  • Open Access

    ARTICLE

    Nanostiffening in Polymeric Nanocomposites

    J. Wang1, D. C. C. Lam2

    CMC-Computers, Materials & Continua, Vol.17, No.3, pp. 215-232, 2010, DOI:10.3970/cmc.2010.017.215

    Abstract Selected elastic moduli of nanocomposites are higher than the elastic moduli of microcomposites. Molecular immobilization and crystallization at the interfaces had been proposed as potential causes, but studies suggested that these effects are minor and cannot be used to explain the magnitude observed in nanocomposites with >3nm particles. Alternately, molecular simulation of polymer deformation showed that rotation gradients can lead to additional molecular rotations and stiffen the matrix. The stiffening is characterized by the nanostiffening material parameter, l2. In this investigation, an analytical expression for nanostiffening in nanocomposites was developed using finite element analysis. The nanostiffening in nanocomposites was determined… More >

  • Open Access

    ARTICLE

    In-plane Crushing Analysis of Cellular Materials Using Vector Form Intrinsic Finite Element

    T.Y. Wu1, W.C. Tsai2, J.J. Lee2

    CMC-Computers, Materials & Continua, Vol.17, No.3, pp. 175-214, 2010, DOI:10.3970/cmc.2010.017.175

    Abstract The crushing of cellular materials is a highly nonlinear problem, for which geometrical, material, and contact/impact must be treated in one analysis. In order to develop a framework able to solve it efficiently and accurately, in this paper procedures for in-plane crushing analysis of cellular materials using vector form intrinsic finite element (VFIFE) is performed. A beam element of VFIFE is employed to handle large rotation and large deflection in the cell walls. An elastic-plastic material model with mixed hardening rule is adopted to account for material nonlinearity. In addition, an efficient contact/impact algorithm is designed to treat the complex… More >

  • Open Access

    ARTICLE

    A Novel Framework for Building Materials Knowledge Systems

    Surya R. Kalidindi1,2,3, Stephen R. Niezgoda1, Giacomo L,i1,1, Tony Fast1

    CMC-Computers, Materials & Continua, Vol.17, No.2, pp. 103-126, 2010, DOI:10.3970/cmc.2010.017.103

    Abstract This paper presents a novel mathematical framework for building a comprehensive materials knowledge system (MKS) to extract, store and recall hierarchical structure-property-processing linkages for a broad range of material systems. This new framework relies heavily on the use of computationally efficient FFT (Fast Fourier Transforms)-based algorithms for data-mining local structure-response-structure evolution linkages from large numerical datasets produced by established modelling strategies for microscale phenomena. Another salient feature of this new framework is that it facilitates flow of high fidelity information in both directions between the constituent length scales, and thereby offers a new strategy for concurrent multi-scale modelling of materials… More >

Displaying 22231-22240 on page 2224 of 22360. Per Page