Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,233)
  • Open Access

    ARTICLE

    Influence of Various Earth-Retaining Walls on the Dynamic Response Comparison Based on 3D Modeling

    Muhammad Akbar1, Huali Pan1,*, Jiangcheng Huang2, Bilal Ahmed3, Guoqiang Ou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2835-2863, 2024, DOI:10.32604/cmes.2024.046993

    Abstract The present work aims to assess earthquake-induced earth-retaining (ER) wall displacement. This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels, reinforcement concrete facing panels, and gravity-type earth-retaining walls. The finite element (FE) simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses. The seismic performance of different models, which includes reinforcement concrete panels and gravity-type and hollow precast concrete ER walls, was simulated and examined using the FE approach. It also displays comparative studies such as stress distribution, deflection of the wall, acceleration across the… More >

  • Open Access

    ARTICLE

    Gyroscope Dynamic Balance Counterweight Prediction Based on Multi-Head ResGAT Networks

    Wuyang Fan, Shisheng Zhong*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2525-2555, 2024, DOI:10.32604/cmes.2023.046951

    Abstract The dynamic balance assessment during the assembly of the coordinator gyroscope significantly impacts the guidance accuracy of precision-guided equipment. In dynamic balance debugging, reliance on rudimentary counterweight empirical formulas persists, resulting in suboptimal debugging accuracy and an increased repetition rate. To mitigate this challenge, we present a multi-head residual graph attention network (ResGAT) model, designed to predict dynamic balance counterweights with high precision. In this research, we employ graph neural networks for interaction feature extraction from assembly graph data. An SDAE-GPC model is designed for the assembly condition classification to derive graph data inputs for the ResGAT regression model, which… More >

  • Open Access

    ARTICLE

    A Hybrid SIR-Fuzzy Model for Epidemic Dynamics: A Numerical Study

    Muhammad Shoaib Arif1,2,*, Kamaleldin Abodayeh1, Yasir Nawaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3417-3434, 2024, DOI:10.32604/cmes.2024.046944

    Abstract This study focuses on the urgent requirement for improved accuracy in disease modeling by introducing a new computational framework called the Hybrid SIR-Fuzzy Model. By integrating the traditional Susceptible-Infectious-Recovered (SIR) model with fuzzy logic, our method effectively addresses the complex nature of epidemic dynamics by accurately accounting for uncertainties and imprecisions in both data and model parameters. The main aim of this research is to provide a model for disease transmission using fuzzy theory, which can successfully address uncertainty in mathematical modeling. Our main emphasis is on the imprecise transmission rate parameter, utilizing a three-part description of its membership level.… More >

  • Open Access

    ARTICLE

    A Simplified Method for the Stress Analysis of Underground Transfer Structures Crossing Multiple Subway Tunnels

    Shen Yan1, Dajiang Geng2,*, Ning Dai3, Mingjian Long2, Zhicheng Bai2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2893-2915, 2024, DOI:10.32604/cmes.2024.046931

    Abstract According to the design specifications, the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer. To address this challenge, a subterranean transfer structure spanning multiple subway tunnels was proposed. Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness, and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure, we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model. The resolved established simplified mechanical model employed… More >

  • Open Access

    ARTICLE

    Investigation of Projectile Impact Behaviors of Graphene Aerogel Using Molecular Dynamics Simulations

    Xinyu Zhang1, Wenjie Xia2, Yang Wang3,4, Liang Wang1,*, Xiaofeng Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3047-3061, 2024, DOI:10.32604/cmes.2023.046922

    Abstract Graphene aerogel (GA), as a novel solid material, has shown great potential in engineering applications due to its unique mechanical properties. In this study, the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics (MD) simulations. The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading. Specifically, the impact-induced penetration of the projectile leads to the collapse of the pore structure, causing stretching and subsequent rupture of covalent bonds in graphene sheets. Moreover, the effects of temperature on the mechanical performance of… More >

  • Open Access

    ARTICLE

    Generative Multi-Modal Mutual Enhancement Video Semantic Communications

    Yuanle Chen1, Haobo Wang1, Chunyu Liu1, Linyi Wang2, Jiaxin Liu1, Wei Wu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2985-3009, 2024, DOI:10.32604/cmes.2023.046837

    Abstract Recently, there have been significant advancements in the study of semantic communication in single-modal scenarios. However, the ability to process information in multi-modal environments remains limited. Inspired by the research and applications of natural language processing across different modalities, our goal is to accurately extract frame-level semantic information from videos and ultimately transmit high-quality videos. Specifically, we propose a deep learning-based Multi-Modal Mutual Enhancement Video Semantic Communication system, called M3E-VSC. Built upon a Vector Quantized Generative Adversarial Network (VQGAN), our system aims to leverage mutual enhancement among different modalities by using text as the main carrier of transmission. With it,… More >

  • Open Access

    ARTICLE

    The Boundary Element Method for Ordinary State-Based Peridynamics

    Xue Liang1,2, Linjuan Wang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2807-2834, 2024, DOI:10.32604/cmes.2024.046770

    Abstract The peridynamics (PD), as a promising nonlocal continuum mechanics theory, shines in solving discontinuous problems. Up to now, various numerical methods, such as the peridynamic mesh-free particle method (PD-MPM), peridynamic finite element method (PD-FEM), and peridynamic boundary element method (PD-BEM), have been proposed. PD-BEM, in particular, outperforms other methods by eliminating spurious boundary softening, efficiently handling infinite problems, and ensuring high computational accuracy. However, the existing PD-BEM is constructed exclusively for bond-based peridynamics (BBPD) with fixed Poisson’s ratio, limiting its applicability to crack propagation problems and scenarios involving infinite or semi-infinite problems. In this paper, we address these limitations by… More >

  • Open Access

    ARTICLE

    Maximum Correntropy Criterion-Based UKF for Loosely Coupling INS and UWB in Indoor Localization

    Yan Wang*, You Lu, Yuqing Zhou, Zhijian Zhao

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2673-2703, 2024, DOI:10.32604/cmes.2023.046743

    Abstract Indoor positioning is a key technology in today’s intelligent environments, and it plays a crucial role in many application areas. This paper proposed an unscented Kalman filter (UKF) based on the maximum correntropy criterion (MCC) instead of the minimum mean square error criterion (MMSE). This innovative approach is applied to the loose coupling of the Inertial Navigation System (INS) and Ultra-Wideband (UWB). By introducing the maximum correntropy criterion, the MCCUKF algorithm dynamically adjusts the covariance matrices of the system noise and the measurement noise, thus enhancing its adaptability to diverse environmental localization requirements. Particularly in the presence of non-Gaussian noise,… More >

  • Open Access

    ARTICLE

    Research on Cavitation Characteristics and Influencing Factors of Herringbone Gear Pump

    Jinlong Yang, Kwang-Hee Lee, Chul-Hee Lee*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2917-2946, 2024, DOI:10.32604/cmes.2024.046740

    Abstract Cavitation is a common issue in pumps, causing a decrease in pump head, a fall in volumetric efficiency, and an intensification of outlet flow pulsation. It is one of the main hazards that affect the regular operation of the pump. Research on pump cavitation mainly focuses on mixed flow pumps, jet pumps, external spur gear pumps, etc. However, there are few cavitation studies on external herringbone gear pumps. In addition, pumps with different working principles significantly differ in the flow and complexity of the internal flow field. Therefore, it is urgent to study the cavitation characteristics of external herringbone gear… More >

  • Open Access

    ARTICLE

    Research on Optimal Preload Method of Controllable Rolling Bearing Based on Multisensor Fusion

    Kuosheng Jiang1, Chengrui Han1, Yasheng Chang2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3329-3352, 2024, DOI:10.32604/cmes.2024.046729

    Abstract Angular contact ball bearings have been widely used in machine tool spindles, and the bearing preload plays an important role in the performance of the spindle. In order to solve the problems of the traditional optimal preload prediction method limited by actual conditions and uncertainties, a roller bearing preload test method based on the improved D-S evidence theory multi-sensor fusion method was proposed. First, a novel controllable preload system is proposed and evaluated. Subsequently, multiple sensors are employed to collect data on the bearing parameters during preload application. Finally, a multisensor fusion algorithm is used to make predictions, and a… More >

Displaying 651-660 on page 66 of 22233. Per Page