Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,233)
  • Open Access

    ARTICLE

    PAL-BERT: An Improved Question Answering Model

    Wenfeng Zheng1, Siyu Lu1, Zhuohang Cai1, Ruiyang Wang1, Lei Wang2, Lirong Yin2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2729-2745, 2024, DOI:10.32604/cmes.2023.046692

    Abstract In the field of natural language processing (NLP), there have been various pre-training language models in recent years, with question answering systems gaining significant attention. However, as algorithms, data, and computing power advance, the issue of increasingly larger models and a growing number of parameters has surfaced. Consequently, model training has become more costly and less efficient. To enhance the efficiency and accuracy of the training process while reducing the model volume, this paper proposes a first-order pruning model PAL-BERT based on the ALBERT model according to the characteristics of question-answering (QA) system and language model. Firstly, a first-order network… More >

  • Open Access

    ARTICLE

    An Empirical Study on the Effectiveness of Adversarial Examples in Malware Detection

    Younghoon Ban, Myeonghyun Kim, Haehyun Cho*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3535-3563, 2024, DOI:10.32604/cmes.2023.046658

    Abstract Antivirus vendors and the research community employ Machine Learning (ML) or Deep Learning (DL)-based static analysis techniques for efficient identification of new threats, given the continual emergence of novel malware variants. On the other hand, numerous researchers have reported that Adversarial Examples (AEs), generated by manipulating previously detected malware, can successfully evade ML/DL-based classifiers. Commercial antivirus systems, in particular, have been identified as vulnerable to such AEs. This paper firstly focuses on conducting black-box attacks to circumvent ML/DL-based malware classifiers. Our attack method utilizes seven different perturbations, including Overlay Append, Section Append, and Break Checksum, capitalizing on the ambiguities present… More >

  • Open Access

    ARTICLE

    Isogeometric Analysis of Hyperelastic Material Characteristics for Calcified Aortic Valve

    Long Chen1, Ting Li1, Liang Liu1, Wenshuo Wang2,*, Xiaoxiao Du3, Wei Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2773-2806, 2024, DOI:10.32604/cmes.2024.046641

    Abstract This study explores the implementation of computed tomography (CT) reconstruction and simulation techniques for patient-specific valves, aiming to dissect the mechanical attributes of calcified valves within transcatheter heart valve replacement (TAVR) procedures. In order to facilitate this exploration, it derives pertinent formulas for 3D multi-material isogeometric hyperelastic analysis based on Hounsfield unit (HU) values, thereby unlocking foundational capabilities for isogeometric analysis in calcified aortic valves. A series of uniaxial and biaxial tensile tests is executed to obtain an accurate constitutive model for calcified active valves. To mitigate discretization errors, methodologies for reconstructing volumetric parametric models, integrating both geometric and material… More > Graphic Abstract

    Isogeometric Analysis of Hyperelastic Material Characteristics for Calcified Aortic Valve

  • Open Access

    ARTICLE

    Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis

    Yan Wang*, Siwen Li, Na Wei

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3467-3493, 2024, DOI:10.32604/cmes.2024.046454

    Abstract A novel approach for analyzing coupled vibrations between vehicles and bridges is presented, taking into account spatiotemporal effects and mechanical phenomena resulting from vehicle braking. Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method. The method’s validity and reliability are substantiated through numerical examples. A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed, braking acceleration, braking location, and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed. The results show… More >

  • Open Access

    ARTICLE

    An Improved Bounded Conflict-Based Search for Multi-AGV Pathfinding in Automated Container Terminals

    Xinci Zhou, Jin Zhu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2705-2727, 2024, DOI:10.32604/cmes.2024.046363

    Abstract As the number of automated guided vehicles (AGVs) within automated container terminals (ACT) continues to rise, conflicts have become more frequent. Addressing point and edge conflicts of AGVs, a multi-AGV conflict-free path planning model has been formulated to minimize the total path length of AGVs between shore bridges and yards. For larger terminal maps and complex environments, the grid method is employed to model AGVs’ road networks. An improved bounded conflict-based search (IBCBS) algorithm tailored to ACT is proposed, leveraging the binary tree principle to resolve conflicts and employing focal search to expand the search range. Comparative experiments involving 60… More >

  • Open Access

    ARTICLE

    A Robust Framework for Multimodal Sentiment Analysis with Noisy Labels Generated from Distributed Data Annotation

    Kai Jiang, Bin Cao*, Jing Fan

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2965-2984, 2024, DOI:10.32604/cmes.2023.046348

    Abstract Multimodal sentiment analysis utilizes multimodal data such as text, facial expressions and voice to detect people’s attitudes. With the advent of distributed data collection and annotation, we can easily obtain and share such multimodal data. However, due to professional discrepancies among annotators and lax quality control, noisy labels might be introduced. Recent research suggests that deep neural networks (DNNs) will overfit noisy labels, leading to the poor performance of the DNNs. To address this challenging problem, we present a Multimodal Robust Meta Learning framework (MRML) for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously. Specifically, we… More >

  • Open Access

    ARTICLE

    Japanese Sign Language Recognition by Combining Joint Skeleton-Based Handcrafted and Pixel-Based Deep Learning Features with Machine Learning Classification

    Jungpil Shin1,*, Md. Al Mehedi Hasan2, Abu Saleh Musa Miah1, Kota Suzuki1, Koki Hirooka1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2605-2625, 2024, DOI:10.32604/cmes.2023.046334

    Abstract Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing communities. In Japan, approximately 360,000 individuals with hearing and speech disabilities rely on Japanese Sign Language (JSL) for communication. However, existing JSL recognition systems have faced significant performance limitations due to inherent complexities. In response to these challenges, we present a novel JSL recognition system that employs a strategic fusion approach, combining joint skeleton-based handcrafted features and pixel-based deep learning features. Our system incorporates two distinct streams: the first stream extracts crucial handcrafted features, emphasizing the capture of hand and body movements within JSL gestures. Simultaneously,… More >

  • Open Access

    ARTICLE

    PCA-LSTM: An Impulsive Ground-Shaking Identification Method Based on Combined Deep Learning

    Yizhao Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3029-3045, 2024, DOI:10.32604/cmes.2024.046270

    Abstract Near-fault impulsive ground-shaking is highly destructive to engineering structures, so its accurate identification ground-shaking is a top priority in the engineering field. However, due to the lack of a comprehensive consideration of the ground-shaking characteristics in traditional methods, the generalization and accuracy of the identification process are low. To address these problems, an impulsive ground-shaking identification method combined with deep learning named PCA-LSTM is proposed. Firstly, ground-shaking characteristics were analyzed and ground-shaking the data was annotated using Baker’s method. Secondly, the Principal Component Analysis (PCA) method was used to extract the most relevant features related to impulsive ground-shaking. Thirdly, a… More >

  • Open Access

    ARTICLE

    Discrete Element Modelling of Damage Evolution of Concrete Considering Meso-Structure of ITZ

    Weiliang Gao1, Shixu Jia2, Tingting Zhao2,3,*, Zhiyong Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3495-3511, 2024, DOI:10.32604/cmes.2023.046188

    Abstract The mechanical properties of interfacial transition zones (ITZs) have traditionally been simplified by reducing the stiffness of cement in previous simulation methods. A novel approach based on the discrete element method (DEM) has been developed for modeling concrete. This new approach efficiently simulates the meso-structure of ITZs, accurately capturing their heterogeneous properties. Validation against established uniaxial compression experiments confirms the precision of this model. The proposed model can model the process of damage evolution containing cracks initiation, propagation and penetration. Under increasing loads, cracks within ITZs progressively accumulate, culminating in macroscopic fractures that traverse the mortar matrix, forming the complex,… More >

  • Open Access

    ARTICLE

    A Sharding Scheme Based on Graph Partitioning Algorithm for Public Blockchain

    Shujiang Xu1,2,*, Ziye Wang1,2, Lianhai Wang1,2, Miodrag J. Mihaljević1,2,3, Shuhui Zhang1,2, Wei Shao1,2, Qizheng Wang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3311-3327, 2024, DOI:10.32604/cmes.2023.046164

    Abstract Blockchain technology, with its attributes of decentralization, immutability, and traceability, has emerged as a powerful catalyst for enhancing traditional industries in terms of optimizing business processes. However, transaction performance and scalability has become the main challenges hindering the widespread adoption of blockchain. Due to its inability to meet the demands of high-frequency trading, blockchain cannot be adopted in many scenarios. To improve the transaction capacity, researchers have proposed some on-chain scaling technologies, including lightning networks, directed acyclic graph technology, state channels, and sharding mechanisms, in which sharding emerges as a potential scaling technology. Nevertheless, excessive cross-shard transactions and uneven shard… More > Graphic Abstract

    A Sharding Scheme Based on Graph Partitioning Algorithm for Public Blockchain

Displaying 661-670 on page 67 of 22233. Per Page