Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,808)
  • Open Access

    ARTICLE

    Feasibility Study on Fabrication of Geopolymer Bricks by Wasted Grinding Wheel at Room Temperature

    Yi-Che Hsieh1,*, Ta-Wui Cheng2, Chia-Ho Wu2

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2020.013353

    Abstract In this study, the feasibility of producing eco-friendly bricks by using geopolymer technology and a waste grinding wheel (WGW) from the grinding wheel industries was investigated. Nowadays, in order to meet industrial needs, for instance, in Taiwan, approximately 500,000 grinding wheels are used annually. That is, a large number of “waste” grinding wheels are produced. Furthermore, few studies have been conducted on the use of WGWs as raw materials in geopolymer applications. The use of geopolymer technology to form bricks can avoid the utilization of clay and cement and even prevent the use of a high-temperature process in kilns. Moreover,… More >

  • Open Access

    ARTICLE

    Utilization of Bayer Red Mud Derived from Bauxite for Belite-Ferroaluminate Cement Production

    Yanrong Zhao1,2,3,#, Ping Chen1,4,*,#, Shifeng Wang5, Yaxiong Ji3,4, Yuanhao Wang3,4,*, Bolin Wu1,2, Rongjin Liu1

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2020.011462

    Abstract Bayer red mud (BRM) is a kind of industrial solid waste characterized by huge volume and high alkalinity. Its disposal generates serious environmental pollution and occupies a large number of farmland. The utilization and recycling of BRM is currently a crucial issue and needs to be addressed as soon as possible. The chemical composition of BRM is similar to cement clinker. In this study, the feasibility of preparing Belite-ferroaluminate clinker (BFAC) with different BRM was explored. The physical properties, mechanics performance, radioactivity levels and trace harmful metals leaching were measured. XRD, BEI and EDS were used to characterize the mineral… More >

  • Open Access

    ARTICLE

    Experimental Research of Concrete with Steel Slag Powder and Zeolite Powder

    Yang Ming1,2,3, Ping Chen1,2,3,*, Yuanhao Wang1,2,3,*, Ling Li1,2,3, Xuandong Chen1,2,3, Pengliang Sun1,2,3,4

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2020.011929

    Abstract In order to increase use ratio of steel slag solid waste, the concrete containing steel slag powder and zeolite powder as admixtures was prepared by using the orthogonal test method. The effects of water-binder ratio, sand ratio, steel slag powder content and zeolite powder on working properties, mechanical strength and chloride ion permeability of the concrete was studied. It was found that the early strength of the concrete had a decrease with the mixing of steel slag and zeolite powders, but its later strength approached to pure concrete. Moreover, the physical filling and pozzolanic activity of the admixtures increased the… More >

  • Open Access

    ARTICLE

    Dynamic Characteristics Analysis of Ice-Adhesion Transmission Tower-Line System under Effect of Wind-Induced Ice Shedding

    Yongping Yu1, Lihui Chen1, Juanjuan Wang1, Guoji Liu2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2020.011067

    Abstract The tower line system will be in an unsafe status due to uniform or uneven fall of ice coating which is attached to the surface of tower and lines. The fall of ice could be caused by wind action or thermal force. In order to study the dynamic characteristics of the self-failure of the transmission line under the action of dynamic wind load, a finite element model of the two-span transmission tower line system was established. The birth and death element methods are used to simulate the icing and shedding of the line. Tensile failure strength is the shedding criterion… More >

  • Open Access

    ARTICLE

    Chitosan and Carboxymethylchitosan as High Turbidity Water Biocoagulants

    Raimundo N. Lima Júnior1, João L. I. O. Almeida1, Jones de Andrade2, Flávia O. M. S. Abreu1,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2020.011629

    Abstract Biocoagulants emerges as a promising technology in water treatment, in order to exploit renewable and biodegradable materials. The present work aims to study the coagulant action of chitosan and carboxymethylchitosan on water with very high turbidity (above 300 NTU), contrasting the physicochemical results with those obtained for aluminum sulphate. Carboxymethylchitosan was produced by the Williamson’s ethers synthesis and characterized by potentiometric titration, FTIR and 1 H-NMR. The coagulant tests were performed using synthetic water in a Jar-test equipment, through the induction of high and low velocity gradients, followed by sedimentation. The results showed turbidity and color removal efficiencies above 99%… More >

  • Open Access

    ARTICLE

    Wind Farm-Battery Energy Storage Assessment in Grid-Connected Microgrids

    Shafiqur Rehman1, Umar T. Salman2,*, Luai M. Alhems1

    Energy Engineering, Vol., , DOI:10.32604/EE.2020.011471

    Abstract Renewable energy has received much attention in the last few decades and more investment is being attracted across the world to boost its contribution towards the existing energy mix. In the Kingdom of Saudi Arabia (KSA), many studies have been conducted on the potential of renewable energy sources (RES), such as wind, solar, and geothermal. Many of these studies have revealed that the Kingdom is blessed with an abundance of RES with wind energy being the best after solar. This paper presents an analysis of windfarm distributed generation (WFDG) for energy management strategy in the Eastern Province of KSA. The… More >

  • Open Access

    ARTICLE

    Properties of ABS/Organic-Attapulgite Nanocomposites Parts Fabricated by Fused Deposition Modeling

    Ling Wang1,2, Shenglong Jiang2, Chenchen Huang2, Pengyuan Dai2, Fenghua Liu2,*, Xiaopeng Qi1, Gaojie Xu2

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2020.010544

    Abstract The paper discusses the mechanical and thermal performance manifested in natural nanorods attapulgite (ATP) reinforced Acrylonitrile butadiene styrene (ABS) nanocomposites in the process of fused deposition modeling (FDM). Molten extrusion technique was taken to manufacture the filaments of ABS/organic-attapulgite (OAT) nanocomposites with different mass fraction and the printing operation was made by one commercial FDM three-dimensional (3D) printer. Results indicate that the mechanical performance of these FDM 3D printed specimens are improved obviously via the introduction of OAT, and tensile strength of the ABS/OAT nanocomposites parts with only 2 wt% OAT addition is enhanced by 48.1%. At the same time,… More >

  • Open Access

    ARTICLE

    Percutaneous Occlusion of Right Partial Anomalous Pulmonary Venous Connection with Dual Drainage to the Innominate Vein and the Left Atrium: A Unique Anatomical Finding

    Alejandro R. Peirone1,*, Alejandro E. Contreras2, Carolina Carrizo2, Mailén Konicoff2, Raúl O. Cayre3

    Congenital Heart Disease, Vol., , DOI:10.32604/CHD.2020.013199

    Abstract A 43-year-old woman with a past medical history of aortic coarctation surgically repaired at the age of 3 years using an end-to-end anastomosis, presented with 2 years complain of increasing dyspnea and fatigue with exercise associated to frequent palpitations. During extensive work-up, she was found to have a partial anomalous pulmonary venous connection (PAPVC) with “dual drainage” represented by a communication between the right pulmonary veins draining into the left atrium and the innominate vein via an anomalous vein due to a persistence of early connections between the sinus of the right pulmonary veins and the cardinal veins system in… More >

  • Open Access

    ARTICLE

    Alterations in Metabolites Associated with Hypoxemia in Neonates and Infants with Congenital Heart Disease

    Evan Pagano1, Benjamin Frank1, James Jaggers2, Mark Twite3, Tracy T. Urban4, Jelena Klawitter2,#, Jesse Davidson1,#,*

    Congenital Heart Disease, Vol., , DOI:10.32604/CHD.2020.012219

    Abstract Objectives: (1) To measure the global shift in the metabolome in hypoxemic versus non-hypoxemic infants with congenital heart disease; (2) To identify metabolites and metabolic pathways that are altered in hypoxemia. Study Design: Analysis of serum samples obtained prior to cardiopulmonary bypass from 82 infants ≤120 days old with congenital heart disease requiring surgery at Children’s Hospital Colorado. Infants were divided into groups based on preoperative oxygen saturations: non-hypoxemic (>92%), mild hypoxemia (85–92%), and severe hypoxemia (<85%). Tandem mass spectrometry was used to analyze 165 targeted metabolites. Partial least squares discriminant analysis and t-tests were used to determine differences among… More >

  • Open Access

    ARTICLE

    Immunomodulatory miRNAs as Potential Biomarkers for the Postoperative Course Following Surgery for the Repair of Congenital Heart Defects in Children

    Or Bercovich1, Tal Tirosh-Wagner2, Lior Goldberg1, Amir Vardi3, David Mishali4, Gideon Paret1,#, Yael Nevo-Caspi1,*,#

    Congenital Heart Disease, Vol., , DOI:10.32604/CHD.2020.011576

    Abstract Objective: To test the hypothesis that circulating miRNAs-146a, -146b, -155, and -21 reflect the inflammatory state of children following heart surgery, and that they may, therefore, correlate with postoperative parameters. We aimed to quantify miRNAs in blood samples from pediatric patients before and 6, 12, and 24 hours after surgery and to evaluate correlations between the miRNA levels and the postoperative course. Setting: PICU. Patients: Forty-two pediatric patients with CHD who underwent cardiac surgery at Safra Children’s Hospital between 2012–2016. Interventions: none. Outcome Measures: The primary outcomes were the postoperative cardiac complications and the secondary outcomes were the length of… More >

Displaying 2681-2690 on page 269 of 2808. Per Page