Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,589)
  • Open Access

    ARTICLE

    Coronavirus Detection Using Two Step-AS Clustering and Ensemble Neural Network Model

    Ahmed Hamza Osman*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 6307-6331, 2022, DOI:10.32604/cmc.2022.024145 - 14 January 2022

    Abstract This study presents a model of computer-aided intelligence capable of automatically detecting positive COVID-19 instances for use in regular medical applications. The proposed model is based on an Ensemble boosting Neural Network architecture and can automatically detect discriminatory features on chest X-ray images through Two Step-As clustering algorithm with rich filter families, abstraction and weight-sharing properties. In contrast to the generally used transformational learning approach, the proposed model was trained before and after clustering. The compilation procedure divides the datasets samples and categories into numerous sub-samples and subcategories and then assigns new group labels to… More >

  • Open Access

    ARTICLE

    Deep Learning-based Wireless Signal Classification in the IoT Environment

    Hyeji Roh, Sheungmin Oh, Hajun Song, Jinseo Han, Sangsoon Lim*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5717-5732, 2022, DOI:10.32604/cmc.2022.024135 - 14 January 2022

    Abstract With the development of the Internet of Things (IoT), diverse wireless devices are increasing rapidly. Those devices have different wireless interfaces that generate incompatible wireless signals. Each signal has its own physical characteristics with signal modulation and demodulation scheme. When there exist different wireless devices, they can suffer from severe Cross-Technology Interferences (CTI). To reduce the communication overhead due to the CTI in the real IoT environment, a central coordinator can be able to detect and identify wireless signals existing in the same communication areas. This paper investigates how to classify various radio signals using… More >

  • Open Access

    ARTICLE

    Machine Learning-based Stable P2P IPTV Overlay

    Muhammad Javid Iqbal1,2, Ihsan Ullah2,*, Muhammad Ali2, Atiq Ahmed2, Waheed Noor2, Abdul Basit2

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5381-5397, 2022, DOI:10.32604/cmc.2022.024116 - 14 January 2022

    Abstract Live video streaming is one of the newly emerged services over the Internet that has attracted immense interest of the service providers. Since Internet was not designed for such services during its inception, such a service poses some serious challenges including cost and scalability. Peer-to-Peer (P2P) Internet Protocol Television (IPTV) is an application-level distributed paradigm to offer live video contents. In terms of ease of deployment, it has emerged as a serious alternative to client server, Content Delivery Network (CDN) and IP multicast solutions. Nevertheless, P2P approach has struggled to provide the desired streaming quality… More >

  • Open Access

    ARTICLE

    Machine Learning-based Optimal Framework for Internet of Things Networks

    Moath Alsafasfeh1,*, Zaid A. Arida2, Omar A. Saraereh3

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5355-5380, 2022, DOI:10.32604/cmc.2022.024093 - 14 January 2022

    Abstract Deep neural networks (DNN) are widely employed in a wide range of intelligent applications, including image and video recognition. However, due to the enormous amount of computations required by DNN. Therefore, performing DNN inference tasks locally is problematic for resource-constrained Internet of Things (IoT) devices. Existing cloud approaches are sensitive to problems like erratic communication delays and unreliable remote server performance. The utilization of IoT device collaboration to create distributed and scalable DNN task inference is a very promising strategy. The existing research, on the other hand, exclusively looks at the static split method in… More >

  • Open Access

    ARTICLE

    Low-Cost Flexible Graphite Monopole Patch Antenna for Wireless Communication Applications

    Suwat Sakulchat1, Amnoiy Ruengwaree1,*, Voranuch Thongpool2, Watcharaphon Naktong3

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 6069-6088, 2022, DOI:10.32604/cmc.2022.024050 - 14 January 2022

    Abstract This research investigates a monopole patch antenna for Wi-Fi applications at 2.45 and 5.2 GHz, and WiMax at 3.5 GHz. A low-cost and flexible graphite sheet with good conductivity, base on graphite conductive powder and glue is used to create a radiator patch and ground plane. Instead of commercially available conductive inks or graphite sheets, we use our self-produced graphite liquid to create the graphite sheet because it is easy to produce and inexpensive. The antenna structure is formed using a low-cost and easy hand-screen printing approach that involved placing graphite liquid on a bendable… More >

  • Open Access

    ARTICLE

    Efficient Data Compression of ECG Signal Based on Modified Discrete Cosine Transform

    Ashraf Mohamed Ali Hassan1, Mohammed S. Alzaidi2, Sherif S. M. Ghoneim2,3,*, Waleed El Nahal4

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4391-4408, 2022, DOI:10.32604/cmc.2022.024044 - 14 January 2022

    Abstract This paper introduced an efficient compression technique that uses the compressive sensing (CS) method to obtain and recover sparse electrocardiography (ECG) signals. The recovery of the signal can be achieved by using sampling rates lower than the Nyquist frequency. A novel analysis was proposed in this paper. To apply CS on ECG signal, the first step is to generate a sparse signal, which can be obtained using Modified Discrete Cosine Transform (MDCT) on the given ECG signal. This transformation is a promising key for other transformations used in this search domain and can be considered… More >

  • Open Access

    ARTICLE

    Metaheuristic Optimization Algorithm for Signals Classification of Electroencephalography Channels

    Marwa M. Eid1,*, Fawaz Alassery2, Abdelhameed Ibrahim3, Mohamed Saber4

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4627-4641, 2022, DOI:10.32604/cmc.2022.024043 - 14 January 2022

    Abstract Digital signal processing of electroencephalography (EEG) data is now widely utilized in various applications, including motor imagery classification, seizure detection and prediction, emotion classification, mental task classification, drug impact identification and sleep state classification. With the increasing number of recorded EEG channels, it has become clear that effective channel selection algorithms are required for various applications. Guided Whale Optimization Method (Guided WOA), a suggested feature selection algorithm based on Stochastic Fractal Search (SFS) technique, evaluates the chosen subset of channels. This may be used to select the optimum EEG channels for use in Brain-Computer Interfaces More >

  • Open Access

    ARTICLE

    Enhance Egocentric Grasp Recognition Based Flex Sensor Under Low Illumination

    Chana Chansri, Jakkree Srinonchat*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4377-4389, 2022, DOI:10.32604/cmc.2022.024026 - 14 January 2022

    Abstract Egocentric recognition is exciting computer vision research by acquiring images and video from the first-person overview. However, an image becomes noisy and dark under low illumination conditions, making subsequent hand detection tasks difficult. Thus, image enhancement is necessary to make buried detail more visible. This article addresses the challenge of egocentric hand grasp recognition in low light conditions by utilizing the flex sensor and image enhancement algorithm based on adaptive gamma correction with weighting distribution. Initially, a flex sensor is installed to the thumb for object manipulation. The thumb placement that holds in a different More >

  • Open Access

    ARTICLE

    Fuzzy Control Based Resource Scheduling in IoT Edge Computing

    Samah Alhazmi, Kailash Kumar*, Soha Alhelaly

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4855-4870, 2022, DOI:10.32604/cmc.2022.024012 - 14 January 2022

    Abstract Edge Computing is a new technology in Internet of Things (IoT) paradigm that allows sensitive data to be sent to disperse devices quickly and without delay. Edge is identical to Fog, except its positioning in the end devices is much nearer to end-users, making it process and respond to clients in less time. Further, it aids sensor networks, real-time streaming apps, and the IoT, all of which require high-speed and dependable internet access. For such an IoT system, Resource Scheduling Process (RSP) seems to be one of the most important tasks. This paper presents a… More >

  • Open Access

    ARTICLE

    Data Hiding in AMBTC Images Using Selective XOR Hiding Scheme

    Yung-Yao Chen1,*, Yu-Chen Hu2, Ting-Kai Yang3, You-An Wang3

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5167-5182, 2022, DOI:10.32604/cmc.2022.023993 - 14 January 2022

    Abstract Nowadays since the Internet is ubiquitous, the frequency of data transfer through the public network is increasing. Hiding secure data in these transmitted data has emerged broad security issue, such as authentication and copyright protection. On the other hand, considering the transmission efficiency issue, image transmission usually involves image compression in Internet-based applications. To address both issues, this paper presents a data hiding scheme for the image compression method called absolute moment block truncation coding (AMBTC). First, an image is divided into non-overlapping blocks through AMBTC compression, the blocks are classified four types, namely smooth,… More >

Displaying 15041-15050 on page 1505 of 31589. Per Page