Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20,209)
  • Open Access

    ARTICLE

    Optimization of Forming Process of a U-rib by Gas Heating Based on Theoretical Prediction

    Juan Blandon1, Shinji Takaba2, Toru Omae2, Naoki Osawa1, Hidekazu Murakawa3

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.1, pp. 53-75, 2015, DOI:10.3970/cmes.2015.106.053

    Abstract Bending deformation of U-rib by gas heating is investigated using Thermal Elastic Plastic FEA employing an accurate heat source model. To validate our computational model, comparison between numerical analysis and experimental measurements are carried out. Good agreement is obtained for both temperature and deformation measurements. Inherent deformation method is employed to evaluate the overall behavior of U-rib under the influence of heating location and heating speed. Based on the prediction by FEA and using the inherent deformation method a new mathematical model describing the deformation of the U-rib is developed and evaluated for different combinations of heating conditions which can… More >

  • Open Access

    ARTICLE

    Analysis of Symmetry Breaking Bifurcation in Duffing System with Random Parameter

    Ying Zhang1, Lin Du1, Xiaole Yue1, Qun Han1, Tong Fang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.1, pp. 37-51, 2015, DOI:10.3970/cmes.2015.106.037

    Abstract The symmetry breaking bifurcation (SBB) phenomenon in a deterministic parameter Duffing system (DP-DS) is well known, yet the problem how would SBB phenomenon happen in a Duffing system with random parameter (RP-DS) is still open. For comparison study, the results for DP-DS are summarized at first: in short, SBB in DP-DS is just a transition of response phase trajectories from a single self-symmetric one about the origin into two mutual symmetric once, or vice versa. However, in DP-DS case, the two mutual symmetric phase trajectories are never commutable. In view of every sample of RP-DS is a DP-DS, we think… More >

  • Open Access

    ARTICLE

    Modified SFDI for Fully NonlinearWave Simulation

    Guochun Xu1, S Yan2, Q.W. Ma1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.1, pp. 1-35, 2015, DOI:10.3970/cmes.2015.106.001

    Abstract In the Meshless Local Petrove-Galerkin based on Rankine source solution (MLPG-R), a simplified finite difference interpolation (SFDI) scheme was developed for numerical interpolation and gradient calculation (CMES, Vol. 23(2), pp. 75-89). Numerical tests concluded that the SFDI is generally as accurate as the linear moving least square method (MLS) but requires less CPU time. In this paper, a modified SFDI is proposed for numerically modelling of nonlinear water waves, considering the typical feature of the spatial variation of the wave-related parameters. Systematic numerical investigations are carried out and the results indicate that the modification considerably improves the robustness of the… More >

  • Open Access

    ARTICLE

    Numerical Solutions of Two-dimensional Stokes Flows by the Boundary Knot Method

    Chia-Ming Fan1,2, Yu-Kai Huang1, Po-Wei Li1, Ying-Te Lee1

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.6, pp. 491-515, 2015, DOI:10.3970/cmes.2015.105.491

    Abstract In this paper, the boundary knot method (BKM) is adopted for accurately analyzing two-dimensional Stokes flows, dominated by viscous force and pressure gradient force. The Stokes flows, which denoted the flow fields with extremely viscous fluid or with very small velocity, appear in various engineering applications, such that it is very important to develop an efficient and accurate numerical method to solve the Stokes equations. The BKM, which can avoid the controversial fictitious boundary for sources, is an integral-free boundary-type meshless method and its solutions are expressed as linear combinations of nonsingular general solutions for Stokes equations. The weighting coefficients… More >

  • Open Access

    ARTICLE

    The Direction Zone of Engineless UAVs in Dynamic Soaring

    B. J. Zhu1,2, Z. X. Hou1, Y. F. Lu1, S. Q. Shan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.6, pp. 467-490, 2015, DOI:10.3970/cmes.2015.105.467

    Abstract This paper mainly analyzes the dynamic soaring of UAV utilizing gradient wind. Dynamic soaring is an efficient path in which UAV absorbs energy from environment to enhance its flight endurance. A set of three-dimensional point dynamic equations for a soaring aircraft in three degrees of freedom is used in calculations. To simplify the calculation, the gradient wind’s direction is taken into decomposition. The notion of trajectory subsection analysis is applied to account for the energy transformation mechanism during the dynamic soaring, and the zone of direction is converted into cutting-in angle, which is regarded as initial limiting condition in the… More >

  • Open Access

    ARTICLE

    A New Efficient Matrix Algorithm for a 3D Component Mode Synthesis (CMS) Model Used on Sound Transmission Problems

    M. D. C. Magalhaes1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.6, pp. 441-465, 2015, DOI:10.3970/cmes.2015.105.441

    Abstract The main goal of this study is to present an alternative and more efficient algorithm for a three-dimensional Component Mode Synthesis model to be used on sound transmission problems. The influence of fluid-structure interaction on airborne sound transmission problems is analysed using this model, which is based on simple volume geometries. In principle, the same procedure can also be applied when the component modes are obtained from alternative numerical techniques. The modal behaviour of acoustic volumes and a partition is implemented in two steps. The novelty of this alternative model is that the structural modes are incorporated on the acoustic… More >

  • Open Access

    ARTICLE

    RBFN stochastic coarse-grained simulation method: Part I - Dilute polymer solutions using Bead-Spring Chain models

    H.Q. Nguyen1, C.-D. Tran1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.5, pp. 399-439, 2015, DOI:10.3970/cmes.2015.105.399

    Abstract In this paper, dynamic behaviours of dilute polymer solutions of various bead-spring chain models in shear flow are studied using a coarse-grained method based on the Integrated Radial Basis Function Networks (IRBFNs) and stochastic technique. The velocity field governed by the macroscopic conservation equations is determined by the IRBFN-based method, whereas the evolution of configurations of polymer chains governed by the diffusion stochastic differential equations are captured by the Brownian Configuration Field (BCF) approach. The system of micro-macro equations is closed by the Kramers’ expression, which allows for the determination of the polymer stresses in terms of BCF configurations. In… More >

  • Open Access

    ARTICLE

    New Spectral Solutions of Multi-Term Fractional-Order Initial Value ProblemsWith Error Analysis

    W. M. Abd- Elhameed1,2, Y. H. Youssri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.5, pp. 375-398, 2015, DOI:10.3970/cmes.2015.105.375

    Abstract In this paper, a new spectral algorithm for solving linear and nonlinear fractional-order initial value problems is established. The key idea for obtaining the suggested spectral numerical solutions for these equations is actually based on utilizing the ultraspherical wavelets along with applying the collocation method to reduce the fractional differential equation with its initial conditions into a system of linear or nonlinear algebraic equations in the unknown expansion coefficients. The convergence and error analysis of the suggested ultraspherical wavelets expansion are carefully discussed. For the sake of testing the proposed algorithm, some numerical examples are considered. The numerical results indicate… More >

  • Open Access

    ARTICLE

    Finding the Generalized SolitaryWave Solutions within the (G'/G)-Expansion Method

    K. Sayevand1, Yasir Khan2, E. Moradi3, M. Fardi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.5, pp. 361-373, 2015, DOI:10.3970/cmes.2015.105.361

    Abstract In this study, the solitary wave solutions for third order equal-width wave-Burgers (EW-Burgers) equation, the second order Bratu and sinh-Bratu type equations will be discussed. The EW-Burgers equation models the propagation of nonlinear and dispersive waves with certain dissipative effects and furthermore the Bratu type problem appears a simplification of the solid fuel ignition model in thermal combustion theory. Our methodology, is investigated by using (G'/G)- expansion method. The obtained results can be extended to the other models. More >

  • Open Access

    ARTICLE

    A Second-order Time-marching Procedure with Enhanced Accuracy

    Delfim Soares Jr.1

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.5, pp. 341-360, 2015, DOI:10.3970/cmes.2015.105.341

    Abstract In this work, a second-order time-marching procedure for dynamics is discussed, in which enhanced accuracy is enabled. The new technique is unconditionally stable (according to its parameter selection), it has no amplitude decay or overshooting, and it provides reduced period elongation errors. The method is based on displacement-velocity relations, requiring no computation of accelerations. It is efficient, simple and very easy to implement. Numerical results are presented along the paper, illustrating the good performance of the proposed technique. As it is described here, the new method has no drawbacks when compared to the Trapezoidal Rule (TR), which is one of… More >

Displaying 17551-17560 on page 1756 of 20209. Per Page