Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,561)
  • Open Access

    ARTICLE

    Deep Learning-Based Secure Transmission Strategy with Sensor-Transmission-Computing Linkage for Power Internet of Things

    Bin Li*, Linghui Kong, Xiangyi Zhang, Bochuo Kou, Hui Yu, Bowen Liu

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3267-3282, 2024, DOI:10.32604/cmc.2024.047193 - 26 March 2024

    Abstract The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power grid data. While wireless communication offers a convenient channel for grid terminal access and data transmission, it is important to note that the bandwidth of wireless communication is limited. Additionally, the broadcast nature of wireless transmission raises concerns about the potential for unauthorized eavesdropping during data transmission. To address these challenges and achieve reliable, secure, and real-time transmission of power grid data, an intelligent… More >

  • Open Access

    ARTICLE

    Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

    Ying Su1, Morgan C. Wang1, Shuai Liu2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3529-3549, 2024, DOI:10.32604/cmc.2024.047189 - 26 March 2024

    Abstract Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning (AutoML). At present, forecasting, whether rooted in machine learning or statistical learning, typically relies on expert input and necessitates substantial manual involvement. This manual effort spans model development, feature engineering, hyper-parameter tuning, and the intricate construction of time series models. The complexity of these tasks renders complete automation unfeasible, as they inherently demand human intervention at multiple junctures. To surmount these challenges, this article proposes leveraging Long Short-Term Memory, which is the variant of Recurrent Neural Networks, harnessing… More >

  • Open Access

    ARTICLE

    Identification of Software Bugs by Analyzing Natural Language-Based Requirements Using Optimized Deep Learning Features

    Qazi Mazhar ul Haq1, Fahim Arif2,3, Khursheed Aurangzeb4, Noor ul Ain3, Javed Ali Khan5, Saddaf Rubab6, Muhammad Shahid Anwar7,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4379-4397, 2024, DOI:10.32604/cmc.2024.047172 - 26 March 2024

    Abstract Software project outcomes heavily depend on natural language requirements, often causing diverse interpretations and issues like ambiguities and incomplete or faulty requirements. Researchers are exploring machine learning to predict software bugs, but a more precise and general approach is needed. Accurate bug prediction is crucial for software evolution and user training, prompting an investigation into deep and ensemble learning methods. However, these studies are not generalized and efficient when extended to other datasets. Therefore, this paper proposed a hybrid approach combining multiple techniques to explore their effectiveness on bug identification problems. The methods involved feature… More >

  • Open Access

    ARTICLE

    Computation Tree Logic Model Checking of Multi-Agent Systems Based on Fuzzy Epistemic Interpreted Systems

    Xia Li1, Zhanyou Ma1,*, Zhibao Mian2, Ziyuan Liu1, Ruiqi Huang1, Nana He1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4129-4152, 2024, DOI:10.32604/cmc.2024.047168 - 26 March 2024

    Abstract Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications. Although there is an extensive literature on qualitative properties such as safety and liveness, there is still a lack of quantitative and uncertain property verifications for these systems. In uncertain environments, agents must make judicious decisions based on subjective epistemic. To verify epistemic and measurable properties in multi-agent systems, this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge (FCTLK). We represent fuzzy multi-agent systems as… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Multi-Keyword Fuzzy Adjacency Search Strategy for Encrypted Graph in Cloud Environment

    Bin Wu1,2, Xianyi Chen3, Jinzhou Huang4,*, Caicai Zhang5, Jing Wang6, Jing Yu1,2, Zhiqiang Zhao7, Zhuolin Mei1,2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3177-3194, 2024, DOI:10.32604/cmc.2023.047147 - 26 March 2024

    Abstract In a cloud environment, outsourced graph data is widely used in companies, enterprises, medical institutions, and so on. Data owners and users can save costs and improve efficiency by storing large amounts of graph data on cloud servers. Servers on cloud platforms usually have some subjective or objective attacks, which make the outsourced graph data in an insecure state. The issue of privacy data protection has become an important obstacle to data sharing and usage. How to query outsourcing graph data safely and effectively has become the focus of research. Adjacency query is a basic… More >

  • Open Access

    ARTICLE

    A Framework for Enhancing Privacy and Anonymity in Blockchain-Enabled IoT Devices

    Muhammad Saad1, Muhammad Raheel Bhutta2, Jongik Kim3,*, Tae-Sun Chung1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4263-4282, 2024, DOI:10.32604/cmc.2024.047132 - 26 March 2024

    Abstract With the increase in IoT (Internet of Things) devices comes an inherent challenge of security. In the world today, privacy is the prime concern of every individual. Preserving one’s privacy and keeping anonymity throughout the system is a desired functionality that does not come without inevitable trade-offs like scalability and increased complexity and is always exceedingly difficult to manage. The challenge is keeping confidentiality and continuing to make the person innominate throughout the system. To address this, we present our proposed architecture where we manage IoT devices using blockchain technology. Our proposed architecture works on… More >

  • Open Access

    ARTICLE

    Improve Chinese Aspect Sentiment Quadruplet Prediction via Instruction Learning Based on Large Generate Models

    Zhaoliang Wu1, Yuewei Wu1,2, Xiaoli Feng1, Jiajun Zou3, Fulian Yin1,2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3391-3412, 2024, DOI:10.32604/cmc.2024.047076 - 26 March 2024

    Abstract Aspect-Based Sentiment Analysis (ABSA) is a fundamental area of research in Natural Language Processing (NLP). Within ABSA, Aspect Sentiment Quad Prediction (ASQP) aims to accurately identify sentiment quadruplets in target sentences, including aspect terms, aspect categories, corresponding opinion terms, and sentiment polarity. However, most existing research has focused on English datasets. Consequently, while ASQP has seen significant progress in English, the Chinese ASQP task has remained relatively stagnant. Drawing inspiration from methods applied to English ASQP, we propose Chinese generation templates and employ prompt-based instruction learning to enhance the model’s understanding of the task, ultimately More >

  • Open Access

    ARTICLE

    Unmanned Ship Identification Based on Improved YOLOv8s Algorithm

    Chun-Ming Wu1, Jin Lei1,*, Wu-Kai Liu1, Mei-Ling Ren1, Ling-Li Ran2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3071-3088, 2024, DOI:10.32604/cmc.2023.047062 - 26 March 2024

    Abstract Aiming at defects such as low contrast in infrared ship images, uneven distribution of ship size, and lack of texture details, which will lead to unmanned ship leakage misdetection and slow detection, this paper proposes an infrared ship detection model based on the improved YOLOv8 algorithm (R_YOLO). The algorithm incorporates the Efficient Multi-Scale Attention mechanism (EMA), the efficient Reparameterized Generalized-feature extraction module (CSPStage), the small target detection header, the Repulsion Loss function, and the context aggregation block (CABlock), which are designed to improve the model’s ability to detect targets at multiple scales and the speed… More >

  • Open Access

    ARTICLE

    Fake News Detection Based on Text-Modal Dominance and Fusing Multiple Multi-Model Clues

    Lifang Fu1, Huanxin Peng2,*, Changjin Ma2, Yuhan Liu2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4399-4416, 2024, DOI:10.32604/cmc.2024.047053 - 26 March 2024

    Abstract In recent years, how to efficiently and accurately identify multi-model fake news has become more challenging. First, multi-model data provides more evidence but not all are equally important. Secondly, social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical. Unfortunately, existing approaches fail to handle these problems. This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues (TD-MMC), which utilizes three valuable multi-model clues: text-model importance, text-image complementary, and text-image inconsistency. TD-MMC is… More >

  • Open Access

    ARTICLE

    Machine-Learning Based Packet Switching Method for Providing Stable High-Quality Video Streaming in Multi-Stream Transmission

    Yumin Jo1, Jongho Paik2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4153-4176, 2024, DOI:10.32604/cmc.2024.047046 - 26 March 2024

    Abstract Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream. However, when the transmission environment is unstable, problems such as reduction in the lifespan of equipment due to frequent switching and interruption, delay, and stoppage of services may occur. Therefore, applying a machine learning (ML) method, which is possible to automatically judge and classify network-related service anomaly, and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when… More >

Displaying 6711-6720 on page 672 of 31561. Per Page