Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,589)
  • Open Access

    ARTICLE

    Circular Formation Control with Collision Avoidance Based on Probabilistic Position

    Hamida Litimein1, Zhen-You Huang1, Muhammad Shamrooz Aslam2,*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 321-341, 2023, DOI:10.32604/iasc.2023.036786 - 29 April 2023

    Abstract In this paper, we study the circular formation problem for the second-order multi-agent systems in a plane, in which the agents maintain a circular formation based on a probabilistic position. A distributed hybrid control protocol based on a probabilistic position is designed to achieve circular formation stabilization and consensus. In the current framework, the mobile agents follow the following rules: 1) the agent must follow a circular trajectory; 2) all the agents in the same circular trajectory must have the same direction. The formation control objective includes two parts: 1) drive all the agents to More >

  • Open Access

    ARTICLE

    Fake News Encoder Classifier (FNEC) for Online Published News Related to COVID-19 Vaccines

    Asma Qaiser1, Saman Hina1, Abdul Karim Kazi1,*, Saad Ahmed2, Raheela Asif3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 73-90, 2023, DOI:10.32604/iasc.2023.036784 - 29 April 2023

    Abstract In the past few years, social media and online news platforms have played an essential role in distributing news content rapidly. Consequently. verification of the authenticity of news has become a major challenge. During the COVID-19 outbreak, misinformation and fake news were major sources of confusion and insecurity among the general public. In the first quarter of the year 2020, around 800 people died due to fake news relevant to COVID-19. The major goal of this research was to discover the best learning model for achieving high accuracy and performance. A novel case study of More >

  • Open Access

    ARTICLE

    Detection Algorithm of Knee Osteoarthritis Based on Magnetic Resonance Images

    Xin Wang*, Shuang Liu, Chang-Cai Zhou

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 221-234, 2023, DOI:10.32604/iasc.2023.036766 - 29 April 2023

    Abstract Knee osteoarthritis (OA) is a common disease that impairs knee function and causes pain. Currently, studies on the detection of knee OA mainly focus on X-ray images, but X-ray images are insensitive to the changes in knee OA in the early stage. Since magnetic resonance (MR) imaging can observe the early features of knee OA, the knee OA detection algorithm based on MR image is innovatively proposed to judge whether knee OA is suffered. Firstly, the knee MR images are preprocessed before training, including a region of interest clipping, slice selection, and data augmentation. Then… More >

  • Open Access

    ARTICLE

    A New Hybrid Feature Selection Sequence for Predicting Breast Cancer Survivability Using Clinical Datasets

    E. Jenifer Sweetlin*, S. Saudia

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 343-367, 2023, DOI:10.32604/iasc.2023.036742 - 29 April 2023

    Abstract This paper proposes a hybrid feature selection sequence complemented with filter and wrapper concepts to improve the accuracy of Machine Learning (ML) based supervised classifiers for classifying the survivability of breast cancer patients into classes, living and deceased using METABRIC and Surveillance, Epidemiology and End Results (SEER) datasets. The ML-based classifiers used in the analysis are: Multiple Logistic Regression, K-Nearest Neighbors, Decision Tree, Random Forest, Support Vector Machine and Multilayer Perceptron. The workflow of the proposed ML algorithm sequence comprises the following stages: data cleaning, data balancing, feature selection via a filter and wrapper sequence, More >

  • Open Access

    ARTICLE

    MTC: A Multi-Task Model for Encrypted Network Traffic Classification Based on Transformer and 1D-CNN

    Kaiyue Wang1, Jian Gao1,2,*, Xinyan Lei1

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 619-638, 2023, DOI:10.32604/iasc.2023.036701 - 29 April 2023

    Abstract Traffic characterization (e.g., chat, video) and application identification (e.g., FTP, Facebook) are two of the more crucial jobs in encrypted network traffic classification. These two activities are typically carried out separately by existing systems using separate models, significantly adding to the difficulty of network administration. Convolutional Neural Network (CNN) and Transformer are deep learning-based approaches for network traffic classification. CNN is good at extracting local features while ignoring long-distance information from the network traffic sequence, and Transformer can capture long-distance feature dependencies while ignoring local details. Based on these characteristics, a multi-task learning model that… More >

  • Open Access

    ARTICLE

    An Improved Granulated Convolutional Neural Network Data Analysis Model for COVID-19 Prediction

    Meilin Wu1,2, Lianggui Tang1,2,*, Qingda Zhang1,2, Ke Yan1,2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 179-198, 2023, DOI:10.32604/iasc.2023.036684 - 29 April 2023

    Abstract As COVID-19 poses a major threat to people’s health and economy, there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently. In non-stationary time series forecasting jobs, there is frequently a hysteresis in the anticipated values relative to the real values. The multilayer deep-time convolutional network and a feature fusion network are combined in this paper’s proposal of an enhanced Multilayer Deep Time Convolutional Neural Network (MDTCNet) for COVID-19 prediction to address this problem. In particular, it is possible to record the deep features and temporal dependencies in uncertain time series, More >

  • Open Access

    ARTICLE

    Cognitive Granular-Based Path Planning and Tracking for Intelligent Vehicle with Multi-Segment Bezier Curve Stitching

    Xudong Wang1,2, Xueshuai Qin1, Huiyan Zhang2,*, Luis Ismael Minchala3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 385-400, 2023, DOI:10.32604/iasc.2023.036633 - 29 April 2023

    Abstract Unmanned vehicles are currently facing many difficulties and challenges in improving safety performance when running in complex urban road traffic environments, such as low intelligence and poor comfort performance in the driving process. The real-time performance of vehicles and the comfort requirements of passengers in path planning and tracking control of unmanned vehicles have attracted more and more attentions. In this paper, in order to improve the real-time performance of the autonomous vehicle planning module and the comfort requirements of passengers that a local granular-based path planning method and tracking control based on multi-segment Bezier… More >

  • Open Access

    ARTICLE

    Baseline Isolated Printed Text Image Database for Pashto Script Recognition

    Arfa Siddiqu, Abdul Basit*, Waheed Noor, Muhammad Asfandyar Khan, M. Saeed H. Kakar, Azam Khan

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 875-885, 2023, DOI:10.32604/iasc.2023.036426 - 29 April 2023

    Abstract The optical character recognition for the right to left and cursive languages such as Arabic is challenging and received little attention from researchers in the past compared to the other Latin languages. Moreover, the absence of a standard publicly available dataset for several low-resource languages, including the Pashto language remained a hurdle in the advancement of language processing. Realizing that, a clean dataset is the fundamental and core requirement of character recognition, this research begins with dataset generation and aims at a system capable of complete language understanding. Keeping in view the complete and full… More >

  • Open Access

    ARTICLE

    A Weakly-Supervised Method for Named Entity Recognition of Agricultural Knowledge Graph

    Ling Wang, Jingchi Jiang*, Jingwen Song, Jie Liu

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 833-848, 2023, DOI:10.32604/iasc.2023.036402 - 29 April 2023

    Abstract It is significant for agricultural intelligent knowledge services using knowledge graph technology to integrate multi-source heterogeneous crop and pest data and fully mine the knowledge hidden in the text. However, only some labeled data for agricultural knowledge graph domain training are available. Furthermore, labeling is costly due to the need for more data openness and standardization. This paper proposes a novel model using knowledge distillation for a weakly supervised entity recognition in ontology construction. Knowledge distillation between the target and source data domain is performed, where Bi-LSTM and CRF models are constructed for entity recognition. More >

  • Open Access

    ARTICLE

    Long-Term Energy Forecasting System Based on LSTM and Deep Extreme Machine Learning

    Cherifa Nakkach*, Amira Zrelli, Tahar Ezzedine

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 545-560, 2023, DOI:10.32604/iasc.2023.036385 - 29 April 2023

    Abstract Due to the development of diversified and flexible building energy resources, the balancing energy supply and demand especially in smart buildings caused an increasing problem. Energy forecasting is necessary to address building energy issues and comfort challenges that drive urbanization and consequent increases in energy consumption. Recently, their management has a great significance as resources become scarcer and their emissions increase. In this article, we propose an intelligent energy forecasting method based on hybrid deep learning, in which the data collected by the smart home through meters is put into the pre-evaluation step. Next, the More >

Displaying 9471-9480 on page 948 of 31589. Per Page